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Abstract

Many problems arising in science and engineering aim to find a function which is the optimal value
of a specified functional. Some examples include optimal control, inverse analysis and optimal
shape design. Only some of these, regarded as variational problems, can be solved analytically,
and the only general technique is to approximate the solution using direct methods. Unfortunately,
variational problems are very difficult to solve, and it becomes necessary to innovate in the field of
numerical methods in order to overcome the difficulties.

The objective of this PhD Thesis is to develop a conceptual theory of neural networks from
the perspective of functional analysis and variational calculus. Within this formulation, learning
means to solve a variational problem by minimizing an objective functional associated to the
neural network. The choice of the objective functional depends on the particular application. On
the other side, its evaluation might need the integration of functions, ordinary differential equations
or partial differential equations.

As it will be shown, neural networks are able to deal with a wide range of applications in
mathematics and physics. More specifically, a variational formulation for the multilayer perceptron
provides a direct method for solving variational problems. This includes typical applications such
as function regression, pattern recognition or time series prediction, but also new ones such as
optimal control, inverse problems and optimal shape design.

This addition of applications causes that a standard neural network is not able to deal with some
particular problems, and it needs to be augmented. In this work an extended class of multilayer
perceptron is developed which, besides the traditional neuron models and network architectures,
includes independent parameters, boundary conditions and lower and upper bounds.

The computational performance of this numerical method is investigated here through the solu-
tion of different validation problems with analytical solution. Moreover, a variational formulation
for an extended class of multilayer perceptron is applied to several engineering cases within optimal
control, inverse problems or optimal shape design. Finally, this work comes with the open source
neural networks C++ library Flood, which has been implemented following the functional analysis
and calculus of variations theories.
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Resumen

Muchos problemas en ciencia e ingeneŕıa se basan en encontrar una función para la cual un funcional
dado toma un valor extremo. Algunos tipos de ejemplos son control óptimo, problemas inversos o
diseño óptimo de formas. Sólo algunos de estos, conocidos como problemas variacionales, tienen
solución anaĺıtica, y la única técnica general es aproximar la solución usando métodos directos.
Sin embargo, los problemas variacionales son muy dif́ıciles de resolver, y es necesario innovar en el
campo de los métodos numéricos para paliar las dificultades.

El objetivo de esta Tesis Doctoral es desarrollar una teoŕıa conceptual de las redes neuronales
desde el punto de vista del análisis funcional y el cálculo de variaciones. Con esta formulación,
aprender es equivalente a resolver un problema variacional minimizando un funcional objetivo
asociado a la red neuronal. La elección del funcional objetivo depende de la aplicación en particular.
Por otro lado, su evaluación puede necesitar la integración de funciones, ecuaciones diferenciales
ordinarias o ecuaciones en derivadas parciales.

Como se verá, las redes neuronales son capaces de resolver una amplia gama de aplicaciones
en matemáticas y f́ısica. Más espećıficamente, una formulación variacional para el perceptrón
multicapa proporciona un método directo para la resolución de problemas variacionales. Esto
incluye aplicaciones t́ıpicas como regresión de funciones, reconocimiento de patrones y predicción
de series temporales, además de algunas nuevas, como control óptimo, problemas inversos y diseño
óptimo de formas.

Dicho aumento de aplicaciones implica que una red neuronal estándar no sea apropiada o sea
incapaz de tratar con algunos problemas particulares, y necesite ser ampliada. En este trabajo se
desarrolla una clase extendida de perceptrón multicapa que, además de los modelos de neurona y
las arquitecturas de red habituales, incluye parámetros independientes, condiciones de contorno y
cotas inferiores y superiores.

El rendimiento computacional de este método numérico es investigado mediante la resolución
de diversos problemas de validación con solución anaĺıtica. Además, una formulación variacional
para una clase extendida de perceptrón multicapa es aplicada a distintos casos en ingenieŕıa dentro
del control óptimo, los problemas inversos y el diseño óptimo de formas. Finalmente, este trabajo
se acompaña de la libreŕıa C++ en código abierto de redes neuronales llamada Flood, que ha sido
implementada bajo la teoŕıa del análisis funcional y el cálculo de variaciones.
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fruitful comments and suggestions.

I also express my gratitude to all the people who has collaborated to any part of this PhD
Thesis. They include Dr. Carlos Agelet, Begoña Carmona, Dr. Michele Chiumenti, Dr. Pooyan
Dadvand, Alan Daring, Xavier Diego, Enrique Escolano, Dr. Roberto Flores, Dr. Julio Garcia,
Kevin Lau and Inma Ortigosa.

Finally I would like to thank all my colleagues at the International Center for Numerical
Methods in Engineering (CIMNE) for their pleasant friendship.

11



This page is intentionally left blank.



Contents

1 Introduction 1

2 Preliminaries 7
2.1 Extreme values of functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The simplest variational problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 The simplest constrained variational problem . . . . . . . . . . . . . . . . . . . . . 15
2.4 Direct methods in variational problems . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 A variational formulation for the multilayer perceptron 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 The perceptron neuron model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 The elements of the perceptron . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2.2 The perceptron function space . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 The multilayer perceptron network architecture . . . . . . . . . . . . . . . . . . . . 28
3.3.1 Feed-forward architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 The multilayer perceptron function space . . . . . . . . . . . . . . . . . . . 30
3.3.3 The Jacobian matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.4 Universal approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.5 Pre and post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.6 Multilayer perceptron extensions . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.7 The input-output activity diagram . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 The objective functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.1 The variational problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.4.2 The reduced function optimization problem . . . . . . . . . . . . . . . . . . 41
3.4.3 The objective function gradient . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.4 The objective function Hessian . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 The training algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.1 The function optimization problem . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.2 Random search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.3 Gradient descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.4 Newton’s method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.5.5 Conjugate gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5.6 Quasi-Newton method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.7 One-dimensional minimization algorithms . . . . . . . . . . . . . . . . . . . 56
3.5.8 Evolutionary algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

i



ii

4 Modeling of data 65
4.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1.1 Function regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.1.2 Pattern recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.3 The sum squared error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1.4 The normalized squared error . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.1.5 The Minkowski error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.6 Regularization theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.7 Linear regression analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2 The residuary resistance of sailing yachts problem . . . . . . . . . . . . . . . . . . 69
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2.2 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.3 The Delft series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.4 Neural networks approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 The airfoil self-noise problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.2 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.3.3 The Brooks-Pope-Marcolini (BPM) model . . . . . . . . . . . . . . . . . . . 77
4.3.4 Neural networks approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Classical problems in the calculus of variations 85
5.1 The geodesic problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.1.2 Selection of function space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.1.3 Formulation of variational problem . . . . . . . . . . . . . . . . . . . . . . . 88
5.1.4 Solution of reduced function optimization problem . . . . . . . . . . . . . . 88

5.2 The brachistochrone problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.2 Selection of function space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.3 Formulation of variational problem . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.4 Solution of reduced function optimization problem . . . . . . . . . . . . . . 94

5.3 The catenary problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.3.2 Selection of function space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.3.3 Formulation of variational problem . . . . . . . . . . . . . . . . . . . . . . . 98
5.3.4 Solution of reduced function optimization problem . . . . . . . . . . . . . . 99

5.4 The isoperimetric problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.4.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.4.2 Selection of function space . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.4.3 Formulation of variational problem . . . . . . . . . . . . . . . . . . . . . . . 104
5.4.4 Solution of reduced function optimization problem . . . . . . . . . . . . . . 105



iii

6 Optimal control problems 109
6.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Validation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.1 The car problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3 The fed batch fermenter problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.4 The aircraft landing problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.4.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.4.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7 Inverse problems 139
7.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
7.2 Validation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2.1 The boundary temperature estimation problem . . . . . . . . . . . . . . . . 142
7.2.2 The thermal conductivity estimation problem . . . . . . . . . . . . . . . . . 147

7.3 Microstructural modeling of aluminium alloys . . . . . . . . . . . . . . . . . . . . . 151
7.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.3.2 Dissolution models for aluminium alloys . . . . . . . . . . . . . . . . . . . . 152
7.3.3 Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
7.3.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
7.3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8 Optimal shape design 161
8.1 Mathematical formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.2 Validation examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8.2.1 The minimum drag problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.3 Optimal airfoil design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.3.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
8.3.3 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
8.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

9 Conclusions and future work 179

A The software model of Flood 181
A.1 The Unified Modeling Language (UML) . . . . . . . . . . . . . . . . . . . . . . . . 181
A.2 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
A.3 Associations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
A.4 Derived classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
A.5 Attributes and operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.5.1 Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
A.5.2 Multilayer perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
A.5.3 Objective functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
A.5.4 Training algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187



iv

B Numerical integration 189
B.1 Integration of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

B.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
B.1.2 Closed Newton-Cotes formulas . . . . . . . . . . . . . . . . . . . . . . . . . 189
B.1.3 Extended Newton-Cotes formulas . . . . . . . . . . . . . . . . . . . . . . . . 190
B.1.4 Ordinary differential equation approach . . . . . . . . . . . . . . . . . . . . 191

B.2 Ordinary differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
B.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
B.2.2 The Euler method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
B.2.3 The Runge-Kutta method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
B.2.4 The Runge-Kutta-Fehlberg method . . . . . . . . . . . . . . . . . . . . . . . 192

B.3 Partial differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
B.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
B.3.2 The finite differences method . . . . . . . . . . . . . . . . . . . . . . . . . . 195
B.3.3 The finite element method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

C Related publications 197

D Related projects 199

E Related software 201



List of Figures

2.1 Illustration of the arc length functional. . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Illustration of the sum squared error functional. . . . . . . . . . . . . . . . . . . . . 10
2.3 The brachistochrone problem statement. . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Analytical solution to the brachistochrone problem. . . . . . . . . . . . . . . . . . . 15
2.5 The isoperimetric problem statement. . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 Analytical solution to the isoperimetric problem. . . . . . . . . . . . . . . . . . . . 19
2.7 Illustration of the Euler method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.8 Illustration of the Ritz method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Activity diagram for the learning problem in the multilayer perceptron. . . . . . . 24
3.2 Perceptron neuron model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 A threshold activation function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 A sigmoid activation function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 A linear activation function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 The feed-forward network architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.7 A two-layer perceptron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.8 An activity diagram for the input-output process in the multilayer perceptron. . . 38
3.9 Geometrical representation of the objective function. . . . . . . . . . . . . . . . . . 41
3.10 Illustration of the objective function gradient vector. . . . . . . . . . . . . . . . . . 43
3.11 Training process in the multilayer perceptron. . . . . . . . . . . . . . . . . . . . . . 49
3.12 Training process with the gradient descent training algorithm. . . . . . . . . . . . . 51
3.13 Training process with the Newton’s method. . . . . . . . . . . . . . . . . . . . . . . 53
3.14 Training process with the conjugate gradient training algorithm. . . . . . . . . . . 55
3.15 Training process with the quasi-Newton method. . . . . . . . . . . . . . . . . . . . 57
3.16 Training process with the evolutionary algorithm. . . . . . . . . . . . . . . . . . . . 58
3.17 Illustration the roulette wheel selection method. . . . . . . . . . . . . . . . . . . . . 60
3.18 Illustration of the stochastic universal sampling selection method. . . . . . . . . . . 60
3.19 Illustration of line recombination. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.20 Illustration of intermediate recombination. . . . . . . . . . . . . . . . . . . . . . . . 62
3.21 Illustration of uniform mutation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.22 Illustration of normal mutation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Network architecture for the yacht resistance problem. . . . . . . . . . . . . . . . . 72
4.2 Evaluation history for the yacht resistance problem. . . . . . . . . . . . . . . . . . 73
4.3 Gradient norm history for the yacht resistance problem. . . . . . . . . . . . . . . . 73
4.4 Linear regression analysis plot for the yacht resistance problem. . . . . . . . . . . . 75
4.5 Airfoil self-noise mechanisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.6 Optimal network architecture for the airfoil self-noise problem. . . . . . . . . . . . 83

v



vi LIST OF FIGURES

4.7 Evaluation history for the airfoil self-noise problem problem. . . . . . . . . . . . . . 83
4.8 Gradient norm history for the airfoil self-noise problem. . . . . . . . . . . . . . . . 84
4.9 Linear regression analysis in the airfoil noise problem. . . . . . . . . . . . . . . . . 84

5.1 The geodesic problem statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.2 Network architecture for the geodesic problem. . . . . . . . . . . . . . . . . . . . . 87
5.3 Initial guess for the geodesic problem. . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4 Evaluation history for the geodesic problem. . . . . . . . . . . . . . . . . . . . . . . 89
5.5 Gradient norm history for the geodesic problem. . . . . . . . . . . . . . . . . . . . 89
5.6 Neural network results for the geodesic problem. . . . . . . . . . . . . . . . . . . . 90
5.7 The brachistochrone problem statement. . . . . . . . . . . . . . . . . . . . . . . . . 91
5.8 Network architecture for the brachistochrone problem. . . . . . . . . . . . . . . . . 92
5.9 Initial guess for the brachistochrone problem. . . . . . . . . . . . . . . . . . . . . . 93
5.10 Evaluation history for the brachistochrone problem. . . . . . . . . . . . . . . . . . 95
5.11 Gradient norm history for the brachistochrone problem. . . . . . . . . . . . . . . . 95
5.12 Neural network results for the brachistochrone problem. . . . . . . . . . . . . . . . 96
5.13 The catenary problem statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.14 Network architecture for the catenary problem. . . . . . . . . . . . . . . . . . . . . 98
5.15 Initial guess for the catenary problem. . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.16 Evaluation history for the catenary problem. . . . . . . . . . . . . . . . . . . . . . 100
5.17 Gradient norm history for the catenary problem. . . . . . . . . . . . . . . . . . . . 100
5.18 Neural network results for the catenary problem. . . . . . . . . . . . . . . . . . . . 101
5.19 The isoperimetric problem statement. . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.20 Network architecture for the isoperimetric problem. . . . . . . . . . . . . . . . . . . 103
5.21 Initial guess for the isoperimetric problem. . . . . . . . . . . . . . . . . . . . . . . . 104
5.22 Evaluation history for the isoperimetric problem. . . . . . . . . . . . . . . . . . . . 106
5.23 Gradient norm history for the isoperimetric problem. . . . . . . . . . . . . . . . . . 106
5.24 Neural network results for the isoperimetric problem. . . . . . . . . . . . . . . . . . 107

6.1 The car problem statement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2 Network architecture for the car problem. . . . . . . . . . . . . . . . . . . . . . . . 113
6.3 Evaluation history for the car problem. . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.4 Gradient norm history for the car problem. . . . . . . . . . . . . . . . . . . . . . . 116
6.5 Neural network solution for the optimal acceleration in the car problem. . . . . . . 117
6.6 Neural network solution for the optimal deceleration in the car problem. . . . . . . 117
6.7 Corresponding optimal trajectory for the position in the car problem. . . . . . . . 118
6.8 Corresponding optimal trajectory for the position in the car problem. . . . . . . . 118
6.9 The fed batch fermenter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.10 Network architecture for the fed batch fermenter problem. . . . . . . . . . . . . . . 121
6.11 Evaluation history in the fed batch fermenter problem. . . . . . . . . . . . . . . . . 123
6.12 Gradient norm history in the fed batch fermenter problem. . . . . . . . . . . . . . 124
6.13 Optimal control for the fed batch fermenter. . . . . . . . . . . . . . . . . . . . . . . 125
6.14 Optimal trajectory for the concentration of cell mass in fed batch fermenter. . . . . 125
6.15 Optimal trajectory for the concentration of substrate in the fed batch fermenter. . 126
6.16 Optimal trajectory for the concentration of product in the fed batch fermenter. . . 126
6.17 Optimal trajectory for the broth volume in the fed batch fermenter problem. . . . 127
6.18 Optimal specific growth rate in the fed batch fermenter problem. . . . . . . . . . . 127
6.19 Optimal specific productivity in the fed batch fermenter problem. . . . . . . . . . . 128
6.20 Elevator deflection angle and pitch angle. . . . . . . . . . . . . . . . . . . . . . . . 128



LIST OF FIGURES vii

6.21 Desired altitude in the aircraft landing problem. . . . . . . . . . . . . . . . . . . . 131
6.22 Network architecture for the aircraft landing problem. . . . . . . . . . . . . . . . . 132
6.23 Evaluation history for the aircraft landing problem. . . . . . . . . . . . . . . . . . . 134
6.24 Optimal control (elevator deflection angle) for the aircraft landing problem. . . . . 135
6.25 Optimal altitude trajectory for the aircraft landing problem. . . . . . . . . . . . . . 135
6.26 Optimal altitude rate trajectory for the aircraft landing problem. . . . . . . . . . . 136
6.27 Optimal pitch angle trajectory for the aircraft landing problem. . . . . . . . . . . . 136
6.28 Optimal pitch angle rate trajectory for the aircraft landing problem. . . . . . . . . 137

7.1 The boundary temperature estimation problem statement. . . . . . . . . . . . . . . 142
7.2 Analytical boundary temperature and corresponding center temperature. . . . . . 143
7.3 Network architecture for the boundary temperature estimation problem. . . . . . . 144
7.4 Evaluation history for the boundary temperature estimation problem. . . . . . . . 145
7.5 Gradient norm history for the boundary temperature estimation problem. . . . . . 146
7.6 Neural network results for the boundary and corresponding center temperatures. . 146
7.7 The thermal conductivity estimation problem statement. . . . . . . . . . . . . . . . 147
7.8 Network architecture for the thermal conductivity estimation problem. . . . . . . . 148
7.9 Evaluation history for the thermal conductivity estimation problem. . . . . . . . . 150
7.10 Gradient norm history for the thermal conductivity estimation problem. . . . . . . 150
7.11 Neural network results to the thermal conductivity estimation problem. . . . . . . 151
7.12 Vickers hardness test for aluminium alloy 2014-T6. . . . . . . . . . . . . . . . . . . 154
7.13 Vickers hardness test for aluminium alloy 7449-T79. . . . . . . . . . . . . . . . . . 154
7.14 Network architecture for aluminium alloys 2014-T6 and 7449-T79. . . . . . . . . . 155
7.15 Training history for aluminium alloy 2014-T6. . . . . . . . . . . . . . . . . . . . . . 157
7.16 Training history for aluminium alloy 7449-T79. . . . . . . . . . . . . . . . . . . . . 158
7.17 Dissolution model for aluminium alloy 2014-T6. . . . . . . . . . . . . . . . . . . . . 159
7.18 Dissolution model for aluminium alloy 7449-T79. . . . . . . . . . . . . . . . . . . . 159

8.1 The minimum drag problem statement. . . . . . . . . . . . . . . . . . . . . . . . . 164
8.2 Network architecture for the minimum drag problem. . . . . . . . . . . . . . . . . . 165
8.3 Initial guess for the minimum drag problem. . . . . . . . . . . . . . . . . . . . . . . 166
8.4 Evaluation history for the minimum drag problem. . . . . . . . . . . . . . . . . . . 167
8.5 Gradient norm history for the minimum drag problem. . . . . . . . . . . . . . . . . 167
8.6 Neural network results to the minimum drag problem. . . . . . . . . . . . . . . . . 168
8.7 Network architecture for the designing of an optimal airfoil. . . . . . . . . . . . . . 171
8.8 Baseline for the designing of an optimal airfoil. . . . . . . . . . . . . . . . . . . . . 172
8.9 Evaluation history in the optimal airfoil design problem. . . . . . . . . . . . . . . . 175
8.10 Results for the camber in the optimal airfoil design problem. . . . . . . . . . . . . 176
8.11 Results for the thickness in the optimal airfoil design problem. . . . . . . . . . . . 177
8.12 Results for the upper and lower surface coordinates in the optimal airfoil design

problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
8.13 Pressure coefficient distribution for the optimal airfoil design. . . . . . . . . . . . . 178

A.1 A conceptual diagram for the multilayer perceptron. . . . . . . . . . . . . . . . . . 182
A.2 Aggregation of associations to the conceptual diagram. . . . . . . . . . . . . . . . . 183
A.3 Aggregation of derived classes to the association diagram. . . . . . . . . . . . . . . 184
A.4 Attributes and operations of the Perceptron classes. . . . . . . . . . . . . . . . . . 185
A.5 Attributes and operations of the class MultilayerPerceptron. . . . . . . . . . . . . . 186
A.6 Attributes and operations of some ObjectiveFunctional classes. . . . . . . . . . . . 187



viii LIST OF FIGURES

A.7 Attributes and operations of the TrainingAlgorithm classes. . . . . . . . . . . . . . 188



List of Tables

4.1 Basic data set statistics in the yacht resistance problem. . . . . . . . . . . . . . . . 70
4.2 Training and validation errors in the yacht resistance problem. . . . . . . . . . . . 71
4.3 Training results for the yacht resistance problem. . . . . . . . . . . . . . . . . . . . 74
4.4 Linear regression analysis parameters for the yacht resistance problem. . . . . . . . 75
4.5 Basic input-target data set statistics in the airfoil noise problem. . . . . . . . . . . 77
4.6 Training and validation errors in the airfoil noise problem. . . . . . . . . . . . . . . 79
4.7 Training results for the airfoil self-noise problem. . . . . . . . . . . . . . . . . . . . 80
4.8 Linear regression analysis parameters for the airfoil self noise problem. . . . . . . . 81

5.1 Training results for the geodesic problem. . . . . . . . . . . . . . . . . . . . . . . . 90
5.2 Training results for the brachistochrone problem. . . . . . . . . . . . . . . . . . . . 96
5.3 Training results for the catenary problem. . . . . . . . . . . . . . . . . . . . . . . . 101
5.4 Training results for the isoperimetric problem. . . . . . . . . . . . . . . . . . . . . . 107

6.1 Training results for the car problem. . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.2 Minimum and maximum for pre and post-processing in the fermenter problem. . . 121
6.3 Training results for the fed batch fermenter problem. . . . . . . . . . . . . . . . . . 124
6.4 Initial Conditions for the aircraft landing problem. . . . . . . . . . . . . . . . . . . 130
6.5 Weight factors in the aircraft landing problem. . . . . . . . . . . . . . . . . . . . . 133
6.6 Training results for the aircraft landing problem. . . . . . . . . . . . . . . . . . . . 134

7.1 Training results for the boundary temperature estimation problem. . . . . . . . . . 145
7.2 Training results for the thermal conductivity estimation problem. . . . . . . . . . . 149
7.3 Parameters for aluminium alloys 2014-T6 and 7449-T79. . . . . . . . . . . . . . . . 155
7.4 Training results for aluminium alloys 2014-T6 and 7449-T79. . . . . . . . . . . . . 157

8.1 Training results for the minimum drag problem. . . . . . . . . . . . . . . . . . . . . 168
8.2 Training operators and parameters for the minimum Eulerian drag problem. . . . . 174
8.3 Training results for the optimal airfoil design problem. . . . . . . . . . . . . . . . . 176

B.1 Cash and Karp parameters for the Runge-Kutta-Fehlberg method. . . . . . . . . . 193

ix



This page is intentionally left blank.



List of Applications

Applications listed by class

1. Function regression:

• Residuary resistance of sailing yachts modeling, see Section 4.2.

• Airfoil self-noise prediction, see Section 4.3.

2. Optimal control:

• Fed batch fermenter, see Section 6.3.

• Aircraft landing systems, see Section 6.4.

3. Inverse problems:

• Microstructural modeling of aluminium alloys, see Section 7.3.

4. Optimal shape design:

• Optimal airfoil design, see Section 8.3.

Applications listed by area

1. Aeronautical:

• Airfoil self-noise prediction, see Section 4.3

• Optimal control of aircraft landing systems, see Section 6.4.

• Optimal airfoil design, see Section 8.3.

2. Chemical:

• Maximum yield in a fed batch fermenter, see Section 6.3.

3. Naval:

• Residuary resistance of sailing yachts prediction, see Section 4.2.

4. Metallurgical:

• Microstructural modeling of aluminium alloys, see Section 7.3.

xi



This page is intentionally left blank.



Chapter 1

Introduction

Queen Dido of Carthage was apparently the first person to attack a problem that can readily be
solved by using the calculus of variations. Dido, having been promised all of the land she could
enclose with a bull’s hide, cleverly cut the hide into many lengths and tied the ends together.
Having done this, her problem was to find the closed curve with a fixed perimeter that encloses
the maximum area [53]. The problem is based on a passage from Virgil’s Aeneid:

The Kingdom you see is Carthage, the Tyrians, the town of Agenor;
But the country around is Libya, no folk to meet in war.
Dido, who left the city of Tyre to escape her brother,
Rules here-a long a labyrinthine tale of wrong
Is hers, but I will touch on its salient points in order...
Dido, in great disquiet, organised her friends for escape.
They met together, all those who harshly hated the tyrant
Or keenly feared him: they seized some ships which chanced to be ready...
They came to this spot, where to-day you can behold the mighty
Battlements and the rising citadel of New Carthage,
And purchased a site, which was named ‘Bull’s Hide’ after the bargain
By which they should get as much land as they could enclose with a bull’s hide.

Despite the circle appears to be an obvious solution to Dido’s problem, proving this fact is
rather difficult. Zenodorus proved that the area of the circle is larger than that of any polygon
having the same perimeter, but the problem was not rigorously solved until 1838 by Jakob Steiner
[99].

The history of variational calculus dates back to the ancient Greeks, but it was not until
the seventeenth century in western Europe that substantial progress was made. A problem of
historical interest is the brachistochrone problem, posed by Johann Bernoulli in 1696. The term
brachistochrone derives from the Greek ‘brachistos’ (the shortest) and ‘chronos’ (time):

Given two points A and B in a vertical plane, what is the curve traced out by a particle acted
on only by gravity, which starts at A and reaches B in the shortest time?

Sir Isaac Newton was challenged to solve the problem, and did so the very next day. In fact,
the solution to the brachistochrone problem, which is a segment of a cycloid, is credited to Johann
and Jacob Bernoulli, Sir Isaac Newton and Guillaume de L’Hôpital [53].

1
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In that context, the so called Dido’s problem was renamed as the isoperimetric problem, and
it was stated as:

Of all simple closed curves in the plane of a given length, which encloses the maximum area?

Another important variational problem is the data modeling problem. A conventional approach
is the method of least squares, which was first proposed by Adrien Marie Legendre and Carl
Friedrich Gauss in the early nineteenth century as a way of inferring planetary trajectories from
noisy data [6].

Note that, in all these problems, curves are sought which are optimal in some sense. More
specifically, the aim of a variational problem is to find a function which is the minimal or the
maximal value of a specified functional. By a functional, we mean a correspondence which assigns
a number to each function belonging to some class [29]. The calculus of variations gives methods
for finding extremals of functionals, and problems that consist in finding minimal and maximal
values of functionals are called variational problems [29].

From an engineering point of view, variational problems can be classified according to the way
in which they can be applied for a particular purpose. In this way, some classes of variational
problems of practical interest are optimal control, inverse or optimal shape design. They are often
defined by integrals, ordinary differential equations or partial differential equations.

Optimal control is playing an increasingly important role in the design of modern engineering
systems. The aim here is the optimization, in some defined sense, of a physical process. More
specifically, the objective of these problems is to determine the control signals that will cause
a process to satisfy the physical constraints and at the same time minimize or maximize some
performance criterion [53] [10]. As a simple example, consider the problem of a rocket launching
a satellite into an orbit around the earth. An associated optimal control problem is to choose the
controls (the thrust attitude angle and the rate of emission of the exhaust gases) so that the rocket
takes the satellite into its prescribed orbit with minimum expenditure of fuel or in minimum time.

Inverse problems can be described as being opposed to direct problems. In a direct problem
the cause is given, and the effect is determined. In an inverse problem the effect is given, and the
cause is estimated [54] [90] [85]. There are two main types of inverse problems: input estimation,
in which the system properties and output are known and the input is to be estimated; and
properties estimation, in which the the system input and output are known and the properties
are to be estimated. Inverse problems can be found in many areas of science and engineering.
A typical inverse problem in geophysics is to find the subsurface inhomogeneities from collected
scattered fields caused by acoustic waves sent at the surface.

Optimal shape design is a very interesting field for industrial applications. The goal in these
problems is to computerize the development process of some tool, and therefore shorten the time
it takes to create or to improve the existing one. Being more precise, in an optimal shape design
process one wishes to optimize some performance criterium involving the solution of a mathematical
model with respect to its domain of definition [18]. One example is the design of airfoils, which
proceeds from a knowledge of the boundary layer properties and the relation between geometry
and pressure distribution [31] [74]. The performance goal here might vary: weight reduction, stress
reinforcement, drag reduction and even noise reduction can be obtained. On the other hand, the
airfoil may be required to achieve this performance with constraints on thickness, pitching moment,
etc.

However, while some simple variational problems can be solved analytically by means of the
Euler-Lagrange equation [29], the only practical technique for general problems is to approximate
the solution using direct methods [29]. The fundamental idea underlying the so called direct
methods is to consider the variational problem as a limit problem for some function optimization
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problem in many dimensions [29]. Two direct methods of considerable concern are those due
to Euler and Ritz [29]. Alternative techniques based on Laguerre polynomials [19], Legendre
polynomials [22], Chebyshev polynomials [48], or more recently wavelets [86] [51], for instance, have
been also proposed. Unfortunately, all these problems are difficult to solve. Deficient approximation
or convergence properties of the base functions, the usually large dimension in the resulting function
optimization problem, the presence of local minima or solutions presenting oscillatory behaviors are
some of the most typical complications. Therefore new numerical methods need to be developed
in order to overcome that troubles.

Unfortunately, variational problems might be extremely difficult to be solved. Deficient ap-
proximation or convergence properties of the base functions, the usually large dimension in the
resulting function optimization problem, the presence of local minima or solutions presenting os-
cillatory behaviors are some of the most typical complications. Therefore, more effort is needed in
order to surmount these difficulties.

During its development, artificial intelligence has been moving toward new methods of knowl-
edge representation and processing that are closer to human reasoning. In this regard, a new
computational paradigm has been established with many developments and applications - artifi-
cial neural networks. An artificial neural network, or simply a neural network, can be defined as
a biologically inspired computational model which consists of a network architecture composed
of artificial neurons [41]. This structure contains a set of parameters, which can be adjusted to
perform certain tasks.

Even though neural networks have similarities to the human brain, they are not meant to model
it, but to be useful models for problem-solving and knowledge-engineering in a ‘humanlike’ way.
The human brain is much more complex and unfortunately, many of its cognitive functions are still
not well known. But the more about the human brain is learnt, the better computational models
can be developed and put to practical use.

One way to understand the ideas behind neural computation is to look at the history of this
science [3]. McCulloch and Pitts described in 1943 a model of a neuron that is binary and has a
fixed threshold [72]. A network of such neurons can perform logical operations, and it is capable
of universal computation. Hebb, in his book published in 1949 [42], proposed neural network
architectures and the first training algorithm. This is used to form a theory of how collections
of cells might form a concept. Rosenblatt, in 1958, put together the ideas of McCulloch, Pitts
and Hebb to present the perceptron neuron model and its training algorithm [87]. Minsky and
Papert demonstrated the theoretical limits of the perceptron in 1969 [73]. Many researchers then
abandoned neural networks and started to develop other artificial intelligence methods and systems.

New models, among them the associative memories [47], self-organizing networks [55], the mul-
tilayer perceptron and the back-propagation training algorithm [89], or the adaptive resonance
theory (ART) [20] were developed later, which brought researchers back to the field of neural
networks. Now, many more types of neural networks have been designed and used. The bidirec-
tional associative memory, radial basis functions, probabilistic RAM neural networks, fuzzy neural
networks and oscillatory neural networks are only a small number of models developed.

From all that kinds of neural network, the multilayer perceptron is a very important one, and
much of the literature in the area is referred to it. Traditionally, the learning problem for the
multilayer perceptron has been formulated in terms of the minimization of an error function of
the free parameters, in order to fit the neural network outputs to an input-target data set [15]. In
that way, the learning tasks allowed are data modeling type problems, such as function regression,
pattern recognition or time series prediction.

The function regression problem can be regarded as the problem of approximating a function
from noisy or corrupted data [41]. Here the neural network learns from knowledge represented by
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a training data set consisting of input-target examples. The targets are a specification of what the
response to the inputs should be [15].

The pattern recognition (or classification) problem can be stated as the process whereby a
received pattern, characterized by a distinct set of features, is assigned to one of a prescribed
number of classes [41]. Here the neural network learns from knowledge represented by a training
data set consisting of input-target examples. The inputs include a set of features which characterize
a pattern. The targets specify the class that each pattern belongs to [15].

The time series prediction problem can be regarded as the problem of predicting the future
state of a system from a set of past observations to that system [41]. A time series prediction
problem can also be solved by approximating a function from input-target data, where the inputs
include data from past observations and the targets include corresponding future observations in
relation to that inputs [15].

Regarding engineering applications, neural networks are nowadays being used to solve a whole
range of problems [58]. Most common case studies include modeling hitherto intractable processes,
designing complex feed-back control signals, building meta-models for posterior optimization or
detecting device faults. All that applications need from an input-target data set in order to
evaluate the error function, and therefore fall into one of the three categories of data modeling
enumerated above.

In this work a variational formulation for the multilayer perceptron is presented. Within this
formulation, the learning problem lies in terms of solving a variational problem by minimizing an
objective functional of the function space spanned by the neural network. The choice of a suitable
objective functional depends on the particular application and it might need the integration of
functions, ordinary differential equations or partial differential equations in order to be evaluated.
As we will see, neural networks are not only able to solve data modeling applications, but also a
wide range of mathematical and physical problems. More specifically, a variational formulation for
neural networks provides a direct method for solving variational problems.

In order to validate this numerical method we train a multilayer perceptron to solve some
classical problems in the calculus of variations, and compare the neural network results against the
analytical result. This variational formulation is also applied to some traditional learning tasks,
such as function regression. Finally validation examples and real applications of different classes
of variational problems in engineering, such as optimal control, inverse analysis and shape design
are also included.

It is important to mention that some efforts have been already performed in this field. Zoppoli
et al. [103] discussed the approximation properties of different classes of neural networks as linear
combinations of non fixed basis functions, and applied this theory to some stochastic functional
optimization problems. In [91], Sarkar and Modak make use of a neural network to determine
several optimal control profiles for different chemical reactors. Also, Franco-Lara and Weuster-
Botz [35] estimated optimal feeding strategies for bed-batch bioprocesses using neural networks.

This work complements that research and introduces a number of novel issues. First, a con-
ceptual theory for neural networks from a variational point of view is written. In particular, we
introduce the idea of the function space spanned by a multilayer perceptron. This neural network
can also be extended so as to include independent parameters, boundary conditions and bounds.
On the other hand, learning tasks are here stated as variational problems. They are defined by an
objective functional, which has a parameterized function associated to it. In addition, we explain
the solution approach of the reduced function optimization problem by means of the training al-
gorithm. Second, the range of engineering applications for neural networks is here augmented so
as to include shape design, optimal control and inverse problems. The performance of this compu-
tational tool is studied through the solution of a validation case for each of that type of problems.
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Third, the embed of different numerical methods, such as the Simpson method, the Runge-Kutta
method or the Finite Element Method for evaluating how well a neural network does an activity
is here considered.

In summary, the emphasis of this PhD Thesis is placed on the demonstration of applicability of
the multilayer perceptron to various classes of variational problems in engineering. In this regard,
a single software tool can be used for many different applications, saving time and effort to the
engineers and therefore reducing cost to the companies.

All the examples presented here are written in a self-contained fashion, and the main con-
cepts are described for every single example, so that the reader needs only to look at the type of
applications which are interesting for him.

Together with this PhD Thesis there is the open source neural networks C++ library Flood
[61]. It uses the same concepts and terminology as in here, and contains everything needed to solve
most of the applications included.

In Chapter 2 the basic mathematical theory concerning the calculus of variations is presented.
These are the most important concepts from which the rest of this work is developed.

In Chapter 3 an extended class of multilayer perceptron is presented so as to include independent
parameters, boundary conditions and lower and upper bounds. The learning problem for that
neural network is then formulated from the perspective of functional analysis and variational
calculus.

In Chapter 4 the task of data modeling is described from a variational point of view. In this
way, function regression and pattern recognition fit in the variational formulation proposed. Several
practical applications are also solved.

In Chapter 5 some classical problems in the calculus of variations are solved using neural
networks. They are intended to be used for validation purposes, but also as a starting point to
understand the solution approach of more complex applications.

In Chapter 6 the most important aspects of optimal control are reviewed and this type of
problems is formulated as a learning task for the multilayer perceptron. In order to validate
this direct method an optimal control problem with analytical solution is solved. Two other real
applications are also approached with a neural network.

In Chapter 7 the inverse problems theory is introduced and stated as a possible application for
neural networks. This is also validated through two different case studies artificially generated.

In Chapter 8 the mathematical basis of optimal shape design is stated and the suitability for a
multilayer perceptron to solve this problems enunciated. Validation examples and more complex
applications are also included here.

In Annex A the software model of Flood [61] is constructed following a top-down approach.
This provides different views of this class library, from the highest conceptual level to the details.

In Annex B, and for the sake of completeness, some basics of numerical methods for integration
of functions, ordinary differential equations and partial differential equations are included. They
are meant to be utilities to be used by the neural network when needed, in order to evaluate the
objective functional.
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Chapter 2

Preliminaries

The calculus of variations, also known as functional differentiation, is a branch of mathematics
which gives methods for finding minimal and maximal values of functionals. In this way, problems
that consist in finding extrema of functionals are called variational problems.

In this Chapter we introduce the main concepts concerning optimum values of functionals. We
also cite some methods to solve problems in the calculus of variations.

2.1 Extreme values of functionals

Variational problems involve determining a function for which a specific functional takes on a
minimum or a maximum value. Here we introduce some concepts concerning functionals, their
variations and their extreme values.

Vector spaces

To begin, let us introduce the concept of vector space.

Definition 1 (Vector space). A vector space V is a set that is closed under the operations of
element addition and scalar multiplication. That is, for any two elements u,v ∈ V and any scalar
α ∈ R

1. u + v ∈ V .

2. αv ∈ V .

Example 1. The Euclidean n-space, denoted Rn, and consisting of the space of all n-tuples of real
numbers, (u1, u2, . . . , un), is a vector space. Elements of Rn are called n-vectors. The operation
of element addition is componentwise; the operation of scalar multiplication is multiplication on
each term separately.

Normed vector spaces

In a vector space, besides the operations of element addition and scalar multiplication, usually
there is introduced a norm [56].

Definition 2 (Normed vector space). A vector space V is said to be normed if each element u ∈ V
is assigned a nonnegative number ‖u‖, called the norm of u, such that

7



8 CHAPTER 2. PRELIMINARIES

1. ‖u‖ = 0 if and only if u = 0.

2. ‖αu‖ = |α|‖u‖.

3. ‖u + v‖ ≤ ‖u‖+ ‖v‖.

Example 2. The Euclidean n-space is a normed vector space. A norm of a n-vector u =
(u1, u2, . . . , un) can be

‖u‖ =

√√√√ n∑
i=1

u2
i . (2.1)

Function spaces

Here we introduce the concept of function space, which is directly related to the concept of normed
vector space [56].

Definition 3 (Function space). A function space is a normed vector space whose elements are
functions. Function spaces might be of infinite dimension.

Example 3. The space Cn(xa, xb), consisting of all functions y(x) defined on a closed interval
[xa, xb] which have bounded continuous derivatives up to order n, is a function space of infinite
dimensions. By addition of elements in Cn and multiplication of elements in Cn by scalars, we mean
ordinary addition of functions and multiplication of functions by numbers. A norm in Cn(xa, xb)
can be

‖y(x)‖n =
n∑

i=0

sup
x∈[xa,xb]

|y(i)(x)|, (2.2)

where y(0)(x) denotes the function y(x) itself and y(i)(x) its derivative of order i. Thus, two
functions in Cn are regarded as close together if the values of the functions themselves and of all
their derivatives up to order n are close together. It is easily verified that all the axioms of a
normed linear space are satisfied for the space Cn.

Two important Cn function spaces are C0, the space of continuous functions, and C1, the space
of continuously differentiable functions.

Example 4. The space Pn(xa, xb), consisting of all polynomials of order n defined on an interval
[xa, xb], is a function space of dimension n + 1. Elements in Pn are of the form

pn(x) =
n∑

k=0

αkxk. (2.3)

The operations of element addition and scalar multiplication in Pn(xa, xb) are defined just as
in Example 3. The l-norm is defined as

‖Pn‖l =

(
n∑

k=0

|αk|l
)1/l

, (2.4)
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for l ≥ 1. This formula gives the special cases

‖pn‖1 =
n∑

k=0

|αk|, (2.5)

‖pn‖2 =

√√√√ n∑
k=0

|αk|2, (2.6)

‖pn‖∞ = max
0≤k≤n

(|αk|). (2.7)

It is easily verified that all the axioms of a normed linear space are satisfied for the space Pn.

Functionals

By a functional, we mean a correspondence which assigns a number to each function belonging to
some class [56].

Definition 4 (Functional). Let V be some function space. A functional F [y(x)] is a correspondence
which assigns a number F ∈ R to each function y(x) ∈ V

F : V → R

y(x) 7→ F [y(x)]

V is called the domain of the functional.

Example 5 (Arc length). Let A = (xa, ya) and B = (xb, yb) be two points on the plane and
consider the collection of all functions y(x) ∈ C1(xa, xb) which connect A to B, i.e., such that
y(xa) = ya and y(xb) = yb. The arc-length L of a curve y(x) is a functional. The value L[y(x)] is
given by the integral

L[y(x)] =
∫ B

A

ds

=
∫ B

A

√
dx2 + dy2

=
∫ xb

xa

√
1 + [y′(x)]2dx. (2.8)

Figure 2.1 represents graphically the arc length functional.

Example 6 (Sum squared error). Let y(x) be a given function, and consider a collection of data
points (x1, y1), . . . , (xn, yn). The squared error E of the curve y(x) with respect to the points
(x1, y1), . . . , (xn, yn) is a functional. The value E[y(x)] is given by

E[y(x)] =
n∑

i=1

(y(xi)− yi)
2
. (2.9)
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Figure 2.1: Illustration of the arc length functional.
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Figure 2.2: Illustration of the sum squared error functional.

Figure 2.1 shows the sum squared error functional.
Both of these examples have one property in common that is a characteristic feature of all

functionals: Given a functional F , to each function y(x) there corresponds a unique number
F [y(x)], just as when we have a function y, to each number x there corresponds a unique number
y(x).

Continuity of functionals

The concept of continuity of functionals naturally appears in functional analysis [56].
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Definition 5 (Continuous functional). Let V be some function space. A functional F [y(x)] defined
on V is said to be continuous at y(x) ∈ V if for any ε > 0 there is a δ > 0 such that, if for some
ŷ(x) ∈ V

‖y(x)− ŷ(x)‖ < δ (2.10)

then

|F [y(x)]− F [ŷ(x)]| < ε. (2.11)

In the sequel we shall consider only continuous functionals and, for brevity, we shall omit the
word ‘continuous’.

Linearity of functionals

Let us introduce the concept of linearity of functionals, which will be useful to us later [56].

Definition 6 (Linear functional). Let V be some function space. A functional F [y(x)] defined on
V is said to be linear if

1. F [αy(x)] = αF [y(x)] for any α ∈ R and any y(x) ∈ V .

2. F [y1(x) + y2(x)] = F [y1(x)] + F [y2(x)] for any y1(x), y2(x) ∈ V .

3. F [y(x)] is continuous for any y(x) ∈ V .

The increment of a functional

In order to consider the variation of a functional, we must define first the concept of increment
[53].

Definition 7 (Increment of a functional). Let V be some function space and let F be a functional
defined on V . The increment of F , denoted by ∆F , is defined as

∆F (y(x), δy(x)) = F [y(x) + δy(x)]− F [y(x)], (2.12)

for any y(x), δy(x) ∈ V .

The variation of a functional

We are now ready for considering the variation (or differential) of a functional [53].

Definition 8 (Variation of a functional). Let V be some function space and let F be a functional
defined on V . Let write the increment of F in the form

∆F [y(x), δy(x)] = δF [y(x), δy(x)] + G[y(x), δy(x)] · ‖δy(x)‖, (2.13)

where y(x), δy(x) ∈ V and δF is a linear functional. If

lim
‖δy(x)‖→0

G[y(x), δy(x)] = 0, (2.14)

then F is said to be differentiable on y(x) and δF is called the variation (or differential) of F at
y(x).
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Extrema of functionals

Next we use the concept of variation to establish a necessary condition for a functional to have an
extremum. We begin by introducing the concept of extrema of functionals [53].

Definition 9 (Extremum of a functional). Let V be some function space and let F be a functional
defined on V . The function y∗(x) is said to yield a relative minimum (maximum) for F if there is
an ε > 0 such that

F [y(x)]− F [y∗(x)] ≥ 0 (≤ 0), (2.15)

for all y(x) ∈ V for which ‖y(x)− y∗(x)‖ < ε.
If Equation (2.15) is satisfied for arbitrarily large ε, then F [y∗(x)] is a global minimum (maxi-

mum). The function y∗(x) is called an extremal, and F [y∗(x)] is referred to as an extremum.

The fundamental theorem in the calculus of variations provides the necessary condition for a
function to be an extremal of a functional [53].

Theorem 1 (The fundamental theorem in the calculus of variations). Let V be some function
space and let F be a functional defined on V . If y∗(x) ∈ V is an extremal of F then

δF [y∗(x), δy(x)] = 0, (2.16)

for any δy(x) ∈ V .

2.2 The simplest variational problem

We shall now consider what might be called the ‘simplest’ variational problem [36], which can be
formulated as follows:

Problem 1 (The simplest variational problem). Let V be the space of all smooth functions y(x)
defined on an interval [xa, xb] which satisfy the boundary conditions y(xa) = ya and y(xb) = yb.
Find a function y∗(x) ∈ V for which the functional

F [y(x)] =
∫ xb

xa

F̂ [x, y(x), y′(x)]dx, (2.17)

defined on V , takes on a minimum or maximum value.

In other words, the simplest variational problem consists of finding an extremum of a functional
of the form (2.17), where the class of admissible functions consists of all smooth curves joining
two points. Such variational problems can be solved analytically by means of the Euler-Lagrange
Equation [36].

Theorem 2 (Euler-Lagrange equation). Let V be the space of all smooth functions y(x) defined
on an interval [xa, xb] which satisfy the boundary conditions y(xa) = ya and y(xb) = yb, and let
F [y(x)] be a functional defined on V of the form

F [y(x)] =
∫ xb

xa

F̂ [x, y(x), y′(x)]dx (2.18)
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Then, a necessary condition for the function y∗(x) ∈ V to be an extremum of F [y(x)] is that
it satisfies the differential equation

∂F̂

∂y
− d

dx

∂F̂

∂y′
= 0. (2.19)

The Euler-Lagrange equation plays a fundamental role in the calculus of variations and it is,
in general, a second order differential equation. The solution then will depend on two arbitrary
constants, which can be determined from the boundary conditions y(xa) = ya and y(xb) = yb.

Example 7 (The brachistochrone problem). The statement of this problem is:

Given two points A = (xa, ya) and B = (xb, yb) in a vertical plane, what is the curve traced out
by a particle acted on only by gravity, which starts at A and reaches B in the shortest time?

Figure 7 is a graphical statement of the brachistochrone problem.
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Figure 2.3: The brachistochrone problem statement.

The time to travel from point A to point B is given by the integral

t =
∫ B

A

ds

v(s)
, (2.20)

where s is the arc length and v is the speed. The speed at any point is given by a simple application
of conservation of energy,

mgya = mgy +
1
2
mv2, (2.21)

where g = 9.81 is the gravitational acceleration. This equation gives
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v =
√

2g(ya − y). (2.22)

Plugging this into Equation (2.20), together with the identity

ds =
√

dx2 + dy2

=
√

1 + [y′(x)]2dx, (2.23)

yields

t =
1√
2g

∫ xb

xa

√
1 + [y′(x)]2

ya − y(x)
dx. (2.24)

In this way, the brachistochrone problem can be formulated from a variational point of view
as:

Let V be the space of all smooth functions y(x) defined on an interval [xa, xb], which are subject
to the boundary conditions y(xa) = ya and y(xb) = yb. Find a function y∗(x) ∈ V for which the
functional

T [y(x)] =
1√
2g

∫ xb

xa

√
1 + [y′(x)]2

ya − y(x)
dx, (2.25)

defined on V , takes on a minimum value.

The functional to be varied is thus

T̂ [y(x), y′(x)] =

√
1 + y′(x)2

ya − y(x)
dx. (2.26)

Making use of the Euler-Lagrange equation, the set of parametric equations (x, y)∗(θ) for the
brachistochrone are given by

x∗(θ) = xa + r(θ − sin (θ)), (2.27)
y∗(θ) = ya − r(1− cos (θ)), (2.28)

for θ ∈ [θa, θb]. These are the equations of a cycloid, which is the locus of a point on the rim of a
circle rolling along a horizontal line. By adjustments of the constants θa, θb and r, it is possible to
construct one and only one cycloid which passes trough the points (xa, ya) and (xb, yb).

Equations (2.27) and (2.28) provide a descent time which is an absolute minimum when com-
pared with all other arcs. This descent time can be obtained as

T [(x, y)∗(θ)] =
√

1
2g

∫ θb

0

√√√√√1 + sin2(θ)
(1− cos (θ))2

r(1− cos (θ))
r(1− cos (θ))dθ

=
√

r

g
θb. (2.29)
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Taking, for example, the points A and B to be A = (0, 1) and B = (1, 0), Equations (2.27) and
(2.28) become

x∗(θ) = 0.583(θ − sin (θ)), (2.30)
y∗(θ) = 1− 0.583(1− cos (θ)), (2.31)

for θ ∈ [0, 2.412]. Figure 2.4 shows the shape of the brachistochrone for this particular example.
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Figure 2.4: Analytical solution to the brachistochrone problem.

Finally, Equation (2.29) gives the descent time for this chute

T [(x, y)∗(θ)] = 0.577. (2.32)

2.3 The simplest constrained variational problem

In the simplest variational problem we have considered so far, the class of admissible curves was
specified, apart from smoothness requirements, by boundary conditions. However, there are many
applications of the calculus of variations in which constraints are imposed on the admissible curves.
Such constraints are expressed as functionals.

Problem 2 (The simplest constrained variational problem). Let V be the space of all smooth
functions y(x) defined on an interval [xa, xb] which satisfy the boundary conditions y(xa) = ya and
y(xb) = yb, and such

C[y(x)] =
∫ xb

xa

Ĉ[x, y(x), y′(x)]dx

= 0. (2.33)
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Find a function y∗(x) ∈ V for which the functional defined on V

F [y(x)] =
∫ xb

xa

F̂ [x, y(x), y′(x)]dx (2.34)

takes on a minimum or a maximum value.

In other words, the simplest constrained variational problem consists of finding an extremum
of a functional of the form (2.34), where the class of admissible functions consists of all smooth
curves joining two points and satisfying some constraint of the form (2.33).

The most common procedure for solving the simplest constrained variational problem is the
use of Lagrange multipliers [36]. In this method, the constrained problem is converted to an
unconstrained problem. The resulting unconstrained problem can then be solved using the Euler-
Lagrange equation.

Theorem 3 (Lagrange multipliers). Let V be the space of all smooth functions y(x) defined on
an interval [xa, xb] which satisfy the boundary conditions y(a) = ya, y(b) = yb, and such

C[y(x)] =
∫ xb

xa

Ĉ[x, y(x), y′(x)]dx

= 0. (2.35)

Let y∗(x) be an extremal for the functional defined on V

F [y(x)] =
∫ xb

xa

F̂ [x, y(x), y′(x)]dx. (2.36)

Then, there exists a constant λ such that y∗(x) is also an extremal of the functional

F̄ [y(x)] =
∫ xb

xa

(
F̂ [x, y(x), y′(x)] + λĈ[x, y(x), y′(x)]

)
dx

=
∫ xb

xa

̂̄F [x, y(x), y′(x)]dx. (2.37)

The constant λ is called the Lagrange multiplier.

The simplest constrained variational problem can then be solved by means of the Euler-
Lagrange equation for the functional F̄ ,

∂ ̂̄F
∂y

− d

dx

∂ ̂̄F
∂y′

= 0. (2.38)

Example 8 (The isoperimetric problem). Dido’s problem, which is also known as the isoperimetric
problem, is be solved by means of Lagrange multipliers and the Euler-Lagrange equation:

Of all simple closed curves in the plane of a given length l, which encloses the maximum area?

Figure 8 states graphically this problem.
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Figure 2.5: The isoperimetric problem statement.

Here we can not use a function y(x) to specify the curve since closed curves will necessarily
make the function multi-valued. Instead, we use the parametric equations x = x(t) and y = y(t),
for t ∈ [0, 1], and such that x(0) = x(1), y(0) = y(1) (where no further intersections occur).

For a plane curve specified in parametric equations as (x, y)(t), the arc length is given by

l =
∫ 1

0

√
[x′(t)]2 + [y′(t)]2dt. (2.39)

On the other hand, Green’s theorem gives the signed area as

a =
1
2

∫ 1

0

(x(t)y′(t)− x′(t)y(t)) dt. (2.40)

Thus, the isoperimetric problem can be formulated from a variational point of view as follows:

Let V be the space of all smooth functions (x, y)(t) defined on the interval [0, 1], which satisfy
the boundary conditions x(0) = 0, x(1) = 0, y(0) = 0, y(1) = 0, and such

L[(x, y)(t)] =
∫ 1

0

√
[x′(t)]2 + [y′(t)]2dt− l

= 0. (2.41)

Find a function (x, y)∗(t) ∈ V for which the functional defined on V

A[(x, y)(t)] =
1
2

∫ 1

0

(x(t)y′(t)− x′(t)y(t)) dt (2.42)

takes on a maximum value.
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We can reformulate this constrained variational problem as an unconstrained variational prob-
lem by means of Lagrange multipliers:

Let V be the space of all smooth functions (x, y)(t) defined on an interval [0, 1], which satisfy
the boundary conditions x(0) = 0, x(1) = 0, y(0) = 0, y(1) = 0. Find a function (x, y)∗(t) ∈ V for
which the functional defined on V

F [(x, y)(t)] =
∫ 1

0

(√
[x′(t)]2 + [y′(t)]2 + λ(x(t)y′(t)− x′(t)y(t))

)
dt (2.43)

takes on a maximum value.
The functional to be varied is therefore

F̂ [x(t), x′(t), y(t), y′(t)] =
√

[x′(t)]2 + [y′(t)]2

+ λ(x(t)y′(t)− x′(t)y(t)). (2.44)

Integrating the Euler-Lagrange equation here a circle with radius r is obtained. A set of
parametric equations (x, y)∗(t) for the circle is given by

x∗(t) = xa + r cos (2πt), (2.45)
y∗(t) = xb + r sin (2πt), (2.46)

for t ∈ [0, 1]. By adjustments of the constants a, b and r it is possible to construct a circle with
perimeter l which satisfies the boundary conditions (x(0), y(0)) = (0, 0) and (x(1), y(1)) = (0, 0).

Taking, for instance, the perimeter of the circle to be l = 1, Equations (2.45) and (2.46) become

x∗(t) = − 1
2π

+
1
2π

cos (2πt), (2.47)

y∗(t) =
1
2π

sin (2πt), (2.48)

for t ∈ [0, 1]. Figure 8 shows the shape of the circle for this particular example.
The area of such a circle is

A[(x, y)∗(t)] =
1
4π

. (2.49)

2.4 Direct methods in variational problems

While many variational problems can be solved analytically by means of the Euler-Lagrange equa-
tion, the only practical technique for general variational problems is to approximate the solution
using ‘direct methods’ [29].

The fundamental idea underlying the so called direct methods is to consider a variational
problem as a limit problem for some function optimization problem in many dimensions. This new
problem is then solved by usual methods. In this way, the difference between variational problems
and function optimization problems is in the number of dimensions. Variational problems entail
infinite dimensions, while function optimization problems involve finite dimensions.

In this section we describe two direct methods, the Euler method and the Ritz method.
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Figure 2.6: Analytical solution to the isoperimetric problem.

The Euler method

The first direct method studied here is the Euler method, also called the finite differences method
[29]. In order to understand the Euler method, consider the simplest variational problem:

Let V be the space of all smooth functions y(x) defined on an interval [a, b] which satisfy the
boundary conditions y(xa) = ya, y(xb) = yb. Find a function y∗(x) ∈ V for which the functional
defined on V

F [y(x)] =
∫ xb

xa

F̂ [x, y(x), y′(x)]dx (2.50)

takes on a minimum or a maximum value.
The main idea of the Euler method is that the values of the functional F [y(x)] are considered

not along all admissible curves y(x) ∈ V , but along polygonal curves which consist of a number
n− 1 of line segments with vertices at points

(xa, ya), (x1, y1), . . . , (xn, yn), (xb, yb)

where xi = xa + ih, for i = 1, . . . , n and being h = (xb − xa)/(n + 1), see Figure 2.7.
Along such polygonal curves the functional F [y(x)] turns into a function f(y1, . . . , yn). The

problem is then to choose y1, . . . , yn so that the function f(y1, . . . , yn) has an extremum. The
necessary condition for the ordinates y1, . . . , yn to be an extremal of f is that they satisfy

∇f(y1, . . . , yn) =
(

∂f

∂y1
, . . . ,

∂f

∂yn

)
= 0. (2.51)

By doing so we shall have a polygonal curve which is an approximate solution to the variational
problem in question.
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Figure 2.7: Illustration of the Euler method.

The Ritz method

The second direct method studied in this section is the Ritz method [29].As before, in order to
understand the Ritz method, consider the simplest variational problem:

Let V be the space of all smooth functions y(x) defined on an interval [a, b] which satisfy the
boundary conditions y(xa) = ya, y(xb) = yb. Find a function y∗(x) ∈ V for which the functional
defined on V

F [y(x)] =
∫ xb

xa

F̂ [x, y(x), y′(x)]dx (2.52)

takes on a minimum or a maximum value.
The idea of the Ritz method is that the values of the functional F [y(x)] are considered not

along all admissible curves y(x) ∈ V , but only along all possible linear combinations of a certain
sequence of n functions g1(x), . . . , gn(x),

y(x) =
n∑

i=1

αigi(x). (2.53)

The elements in the function space defined by Equation (2.53) must satisfy the boundary
conditions for a given problem, which is a restriction on the choice of the sequence of functions
gi(x). Along such linear combination the functional F [y(x)] becomes a function of the coefficients
f(α1, . . . , αn). The problem is the to choose α1, . . . , αn so that the function f(α1, . . . , αn) has an
extremum. The necessary condition for the coefficients α1, . . . , αn to be an extremal of f is that
they satisfy

∇f(α1, . . . , αn) =
(

∂f

∂α1
, . . . ,

∂f

∂αn

)
= 0. (2.54)
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By doing so we shall obtain a curve which is an approximate solution to the variational problem
in question. The initial choice of the functions {g1, . . . , gn}, which are called coordinate functions
is of greet importance, and therefore a successful application of Ritz’s method depends on an
adequate choice of the coordinate functions. Figure 2.8 illustrates this method.
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Figure 2.8: Illustration of the Ritz method.
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Chapter 3

A variational formulation for the
multilayer perceptron

There are many different types of neural networks. The multilayer perceptron is an important
one, and most of the literature in the field is referred to this neural network. In this Chapter, the
learning problem in the multilayer perceptron is formulated from a variational point of view. In
this way, learning tasks lie in terms of finding a function which causes some functional to assume
an extreme value. As we shall see, the multilayer perceptron provides a general framework for
solving variational problems.

3.1 Introduction

The multilayer perceptron is characterized by a neuron model, a network architecture and as-
sociated objective functionals and training algorithms. This four concepts are briefly described
next.

1. Neuron model . A neuron model is a mathematical model of the behavior of a single neuron
in a biological nervous system. The characteristic neuron model in the multilayer perceptron
is the so called perceptron. The perceptron neuron model receives information in the form
of a set of numerical input signals. This information is then integrated with a set of free
parameters to produce a message in the form of a single numerical output signal.

2. Network architecture. In the same way a biological nervous system is composed of inter-
connected biological neurons, an artificial neural network is built up by organizing artificial
neurons in a network architecture. In this way, the architecture of a network refers to the
number of neurons, their arrangement and connectivity. The characteristic network archi-
tecture in the multilayer perceptron is the so called feed-forward architecture.

3. Objective functional . The objective functional plays an important role in the use of a neural
network. It defines the task the neural network is required to do and provides a measure
of the quality of the representation that the network is required to learn. The choice of a
suitable objective functional depends on the particular application.

4. Training algorithm. The procedure used to carry out the learning process is called training
algorithm, or learning algorithm. The training algorithm is applied to the network to in

23
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order to obtain a desired performance. The type of training is determined by the way in
which the adjustment of the free parameters in the neural network takes place.

Figure 3.1 depicts an activity diagram for the learning problem in the multilayer perceptron.
The solving approach here consists of three steps. The first step is to choose a suitable parame-
terized function space in which the solution to the problem is to be approximated. The elements
of this family of functions are those spanned by a multilayer perceptron. In the second step the
variational problem is formulated by selecting an appropriate objective functional, defined on the
function space chosen before. The third step is to solve the reduced function optimization problem.
This is performed with a training algorithm capable of finding an optimal set of parameters.

define function space

Multilayer Perceptron

formulate variational problem

Objective Functional

solve reduced function optimization problem

Training Algorithm

Figure 3.1: Activity diagram for the learning problem in the multilayer perceptron.

3.2 The perceptron neuron model

As we have said, a neuron model is the basic information processing unit in a neural network.
The perceptron is the characteristic neuron model in the multilayer perceptron. Following current
practice [98], the term perceptron is here applied in a more general way than by Rosenblatt, and
covers the types of units that were later derived from the original perceptron.

3.2.1 The elements of the perceptron

The block diagram in Figure 3.2 is a graphical representation of the perceptron. Here we identify
three basic elements, which transform the input signals (x1, . . . , xn) in a single output signal y [13]:

• A set of free parameters α, which consists of a bias b and a vector of synaptic weights
(w1, . . . , wn).

• A combination function h, which combines the input signals and the free parameters to
produce a single net input signal u.
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• An activation function or transfer function g, which takes as argument the net input signal
and produces the output signal.

h

w1

x1

xn

b

1

.

.

.

y
w2

wn

g

x2

u

Figure 3.2: Perceptron neuron model.

Next we describe in more detail the three basic elements of this neuron model [41]:

Free parameters

The free parameters allow a neuron model to be trained to perform a task. In the perceptron, the
set of free parameters is:

α = (b,w) ∈ R×Rn (3.1)

where b is called the bias and w = (w1, . . . , wn) is called the synaptic weight vector. Note then
that the number of free parameters of this neuron model is 1 + n, where n is the number of inputs
in the neuron.

Combination function

In the perceptron, the combination function h computes the inner product of the input vector
x = (x1, . . . , xn) and the synaptic weight vector w = (w1, . . . , wn) to produce a net input signal
u. This model also includes a bias externally applied, denoted by b, which increases or reduces
the net input signal to the activation function, depending on whether it is positive or negative,
respectively. The bias is often represented as a synaptic weight connected to an input fixed to +1,

h(x; b,w) = b +
n∑

i=1

wixi. (3.2)

Activation function

The activation function g defines the output signal y from the neuron in terms of its net input
signal u. In practice we can consider many useful activation functions [27]. Three of the most used
activation functions are the threshold function, the linear function and the sigmoid function [41].
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Threshold function . For this activation function, represented in Figure 3.3 we have

g(u) =
{
−1 u < 0
1 u ≥ 0 (3.3)

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

u

y

Figure 3.3: A threshold activation function.

That is, the threshold activation function limits the output of the neuron to −1 if the net
input u is less than 0; or 1 if u is equal to or greater than 0.

There might be some cases when we need to compute the activation derivative of the neuron,

g′(u) ≡ dg(u)
du

. (3.4)

or its second derivative,

g′′(u) ≡ d2g(u)
du2

. (3.5)

The problem with the threshold activation function is that it is not differentialbe at the point
u = 0.

Sigmoid function . The sigmoid function is the most used activation function when constructing
neural networks. Is an monotonous crescent function which exhibits a good balance between
a linear and a non-linear behavior. An example of a sigmoid function is the hyperbolic
tangent function, defined by

g(u) = tanh (u). (3.6)
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Figure 3.4: A sigmoid activation function.

The hyperbolic tangent function is represented in Figure 3.4.

For this sigmoid function, the activation derivative is given by

g′(u) = 1− tanh2 (u), (3.7)

and the second derivative of the activation is given by

g′′(u) = −2 tanh (u)(1− tanh2 (u)). (3.8)

Linear function . For the linear activation function, described in Figure 3.5 we have

g(u) = u. (3.9)

Thus, the output signal of a neuron model with linear activation function is equal to its net
input.

For the linear function, the activation derivative is given by

g′(u) = 1, (3.10)

and the second derivative of the activation is given by

g′′(u) = 0. (3.11)
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Figure 3.5: A linear activation function.

3.2.2 The perceptron function space

Mathematically, a perceptron neuron model may be viewed as a parameterized function space V
from an input X ⊂ Rn to an output Y ⊂ R. Elements of V are parameterized by the bias and the
vector of synaptic weights of the neuron. In this way the dimension of V is n + 1.

We can write down an expression for the elements of the function space which a perceptron
can define [15]. The net input to the neuron is obtained by first forming a linear combination of
the input signals and the synaptic weights, and then adding the bias, to give

u = b +
n∑

i=1

wixi. (3.12)

The output of the neuron is obtained transforming the linear combination in Equation (3.12)
with an activation function g to give

y(x; b,w) = g

(
b +

n∑
i=1

wixi

)
. (3.13)

Distinct activation functions cause distinct families of functions which a perceptron can define.
Similarly, distinct sets of free parameters cause distinct elements in the function space which a
specific perceptron defines. The concepts of linear and sigmoid perceptron are implemented within
the classes LinearPerceptron and SigmoidPerceptron of the C++ library Flood [61].

Although a single perceptron can solve some simple learning tasks, the power of neural com-
putation comes from connecting many neurons in a network architecture [98].

3.3 The multilayer perceptron network architecture

Neurons can be combined to form a neural network. The architecture of a neural network refers
to the number of neurons, their arrangement and connectivity. Any network architecture can be
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symbolized as a directed and labeled graph, where nodes represent neurons and edges represent
connectivities among neurons. An edge label represents the free parameter of the neuron for which
the flow goes in [13].

Most neural networks, even biological neural networks, exhibit a layered structure. In this work
layers are the basis to determine the architecture of a neural network [98]. Thus, a neural network
typically consists on a set of sensorial nodes which constitute the input layer, one or more hidden
layers of neurons and a set of neurons which constitute the output layer.

As it was said above, the characteristic neuron model of the multilayer perceptron is the per-
ceptron. On the other hand, the multilayer perceptron has a feed-forward network architecture.

3.3.1 Feed-forward architectures

Feed-forward architectures contain no cycles, i.e., the architecture of a feed-forward neural network
can then be represented as an acyclic graph. Hence, neurons in a feed-forward neural network are
grouped into a sequence of c+1 layers L(1), . . . , L(c+1), so that neurons in any layer are connected
only to neurons in the next layer. The input layer L(0) consists of n external inputs and is not
counted as a layer of neurons; the hidden layers L(1), . . . , L(c) contain h1, . . . , hc hidden neurons,
respectively; and the output layer L(c+1) is composed of m output neurons. Communication
proceeds layer by layer from the input layer via the hidden layers up to the output layer. The
states of the output neurons represent the result of the computation [98].

Figure 3.6 shows a feed-forward architecture, with n inputs, c hidden layers with hi neurons,
for i = 1, . . . , c, and m neurons in the output layer.
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Figure 3.6: The feed-forward network architecture.

In this way, in a feed-forward neural network, the output of each neuron is a function of the
inputs. Thus, given an input to such a neural network, the activations of all neurons in the output
layer can be computed in a deterministic pass [15].
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3.3.2 The multilayer perceptron function space

In Section 3.2 we considered the space of functions that a perceptron neuron model can define. As
it happens with a single perceptron, a multilayer perceptron neural network may be viewed as a
parameterized function space V from an input X ⊂ Rn to an output Y ⊂ Rm. Elements of V are
parameterized by the biasses and synaptic weights in the neural network, which can be grouped
together in a s-dimensional vector α = (α1, . . . , αs). The dimension of the function space V is
therefore s.

Figure 3.7 shows a multilayer perceptron, with n inputs, one hidden layer with h1 neurons and
m neurons in the output layer. Biases in the hidden layer are represented as synaptic weights from
an extra input with a fixed value of x0 = 1. Similarly, biases in the output layer are represented
as synaptic weights from an extra hidden neuron, with a fixed activation also fixed to y

(1)
0 = 1.
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Figure 3.7: A two-layer perceptron.

We can write down the analytical expression for the elements of the function space which the
multilayer perceptron shown in Figure 3.7 can define [15]. Indeed, the net input to the hidden
neuron j is obtained first by forming a linear combination of the n input signals, and adding the
bias, to give
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u
(1)
j = b

(1)
j +

n∑
i=1

w
(1)
ji xi

=
n∑

i=0

α
(1)
ji xi, (3.14)

for j = 1, . . . , h1. α
(1)
j0 denotes the bias of neuron j in layer (1), for which x0 = 1; α

(1)
ji , for

i = 1, . . . , n, denotes the synaptic weight of neuron j in layer (1) which comes from input i.
The output of hidden neuron j is obtained transforming the linear combination in Equation

(3.14) with an activation function g(1) to give

y
(1)
j = g(1)

(
u

(1)
j

)
, (3.15)

for j = 1, . . . , h1. The neural network outputs are obtained transforming the output signals of
the neurons in the hidden layer by the neurons in the output layer. Thus, the net input for each
output neuron k is obtained forming a linear combination of the output signals from the hidden
layer neurons of the form

u
(2)
k = b

(2)
k +

h1∑
j=1

w
(2)
kj y

(1)
j

=
h1∑

j=0

α
(2)
kj y

(1)
j , (3.16)

for k = 1, . . . ,m. The value α
(2)
k0 denotes the bias of neuron k in layer (2), for which y

(1)
0 = 1;

similarly, the value α
(2)
kj , j = 1, . . . , h1, denotes the synaptic weight of neuron k in layer (2) which

comes from input j.
The activation of the output neuron k is obtained transforming the linear combination in

Equation (3.16) with an activation function g(2) to give

yk = g(2)
(
u

(2)
k

)
, (3.17)

for k = 1, . . . ,m. Note that the activation function in the output layer does not need to be the
same than for that in the hidden layer.

If we combine (3.14), (3.15), (3.16) and (3.17) we obtain an explicit expression for the function
represented by the neural network diagram in Figure 3.7 of the form

yk = g(2)

 h1∑
j=0

α
(2)
kj g(1)

(
n∑

i=0

α
(1)
ji xi

) , (3.18)

for k = 1, . . . ,m. In this way, the multilayer perceptron can be considered as a function of many
variables composed by superposition and addition of functions of one variable. The neural network
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shown in Figure 3.7 corresponds to a transformation of the input variables by two successive
different networks with a single layer. This class of networks can be extended by considering
new successive transformation of the same kind, which corresponds to networks with more hidden
layers.

Distinct activation functions cause distinct families of functions which a multilayer perceptron
can define. Similarly, distinct sets of free parameters cause distinct elements in the function space
which a specific multilayer perceptron defines.

A multilayer perceptron with a sigmoid hidden layer and a linear output layer is implemented
within the C++ class MultilayerPerceptron of Flood [61].

3.3.3 The Jacobian matrix

There are some cases when, in order to evaluate the objective functional of a multilayer perceptron,
we need to compute the derivatives of the network outputs with respect to the inputs. That
derivatives can be grouped together in the Jacobian matrix, whose elements are given by

Jki ≡
∂yk

∂xi
, (3.19)

for i = 1, . . . , n, k = 1, . . . ,m and where each such derivative is evaluated with all other inputs
held fixed.

In Sections 5.2 and 5.4 we make use of the Jacobian matrix to evaluate two different objective
functionals for the multilayer perceptron.

The Jacobian matrix can be evaluated either by using a back-propagation procedure, or by
means of numerical differentiation.

The back-propagation algorithm for the calculus of the Jacobian matrix

Here we evaluate the Jacobian matrix for the multilayer perceptron using the back-propagation
algorithm. Results are derived for the one hidden layer perceptron shown in Figure 3.7, but they
are easily generalized to networks with several hidden layers of neurons.

We start by writing the element Jki in the form

Jki =
∂yk

∂xi

=
h1∑

j=1

∂yk

∂u
(1)
j

∂u
(1)
j

∂xi
, (3.20)

for i = 1, . . . , n and k = 1, . . . ,m. In order to determine the derivative ∂u
(1)
j /∂xi let us consider

the net input signal for each neuron in the hidden layer

u
(1)
j =

n∑
i=0

α
(1)
ji xi, (3.21)

for j = 1, . . . , h1. Thus, the mentioned derivative yields
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∂u
(1)
j

∂xi
= α

(1)
ji , (3.22)

for i = 1, . . . , n and j = 1, . . . , h1. Equation (3.20) becomes

Jki =
h1∑

j=1

α
(1)
ij

∂yk

∂u
(1)
j

, (3.23)

for i = 1, . . . , n and k = 1, . . . ,m. We now write down a recursive back-propagation formula to
determine the derivatives ∂yk/∂u

(1)
j .

∂yk

∂u
(1)
j

=
m∑

l=1

∂yk

∂u
(2)
l

∂u
(2)
l

∂u
(1)
j

, (3.24)

for j = 1, . . . , h1 and k = 1, . . . ,m. The derivative ∂u
(2)
l /∂u

(1)
j can be calculated by first considering

the net input signal of each neuron in the output layer

u
(2)
l =

h1∑
j=0

α
(2)
lj y

(1)
j , (3.25)

for l = 1, . . . ,m. The activation of each neuron in the hidden layer is given by

y
(1)
j = g(1)(u(1)

j ), (3.26)

for j = 1, . . . , h1. So we can write an expression for the net input signal of each neuron in the
output layer in the form

u
(2)
l =

h1∑
j=0

α
(2)
lj g(1)(u(1)

j ), (3.27)

for l = 1, . . . ,m. Thus, the derivative ∂u
(2)
l /∂u

(1)
j yields

∂u
(2)
l

∂u
(1)
j

= w
(2)
lj g′(1)(u(1)

j ), (3.28)

for j = 1, . . . , h1 and l = 1, . . . ,m. Equation (3.21) becomes

∂yk

∂u
(1)
j

= g′(u(1)
j )

m∑
l=1

α
(2)
lj

∂y
(2)
k

∂u
(2)
l

, (3.29)
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for j = 1, . . . , h1 and k = 1, . . . ,m. For the output neurons we have

yk = g(2)(u(2)
k ), (3.30)

for k = 1, . . . ,m, and from which

∂yk

∂u
(2)
k′

= g′(2)(u(2)
k )δkk′ . (3.31)

δkk′ is the Kronecker delta symbol, and equals 1 if k = k′ and 0 otherwise. We can therefore
summarize the procedure for evaluating the Jacobian matrix as follows [15]:

1. Apply the input vector corresponding to the point in input space at which the Jacobian
matrix is to be found, and forward propagate in the usual way to obtain the activations of
all of the hidden and output neurons in the network.

2. For each row k of the Jacobian matrix, corresponding to the output neuron k, back-propagate
to the hidden units in the network using the recursive relation (3.29), and starting with (3.31).

3. Use (3.23) to do the back-propagation to the inputs. The second and third steps are the
repeated for each value of k, corresponding to each row of the Jacobian matrix.

A C++ software implementation of this algorithm can be found inside the class MultilayerPerceptron
of Flood [61].

Numerical differentiation for the calculus of the Jacobian matrix

The Jacobian matrix for the multilayer perceptron Jki can also be evaluated using numerical
differentiation [15]. This can be done by perturbing each input in turn, and approximating the
derivatives by using forward differences,

∂yk

∂xi
=

yk(xi + ε)− yk(xi)
ε

+O(ε), (3.32)

for i = 1, . . . , n, k = 1, . . . ,m and for some small numerical value of ε.
The accuracy of the finite differences method can be improved significantly by using central

differences of the form

∂yk

∂xi
=

yk(xi + ε)− yk(xi − ε)
2ε

+O(ε2), (3.33)

also for i = 1, . . . , n, k = 1, . . . ,m and for some small numerical value of ε.
In a software implementation the Jacobian matrix for the multilayer perceptron Jki should be

evaluated using the back-propagation algorithm, since this gives the greatest accuracy and numer-
ical efficiency [15]. The implementation of such algorithm should be checked by using numerical
differentiation. Both forward and central differences for the Jacobian are also implemented inside
the class MultilayerPerceptron of Flood [61].
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3.3.4 Universal approximation

A multilayer perceptron with as few as one hidden layer of sigmoid neurons and an output layer
of linear neurons provides a general framework for approximating any function from one finite
dimensional space to another up to any desired degree of accuracy, provided sufficiently many
hidden neurons are available. In this sense, multilayer perceptron networks are a class of universal
approximators [49].

A detailed statement of the universal approximation theorem for the multilayer perceptron is
out of the scope of this work, so that it is not included here. The interested reader can find this
theorem, as well as its demonstration, in [49].

The universal approximation capability of the multilayer perceptron implies that any lack of
success in an application must arise from a wrong number of hidden neurons, the lack of the
objective functional or inadequate training.

3.3.5 Pre and post-processing

In practice it is always convenient to pre-process the inputs in order to produce input signals to the
neural network of order zero. In this way, if all the free parameters are of order zero, the output
signals will be also of order zero.

There are several pre and post-processing methods. Two of the most used are the mean and
standard deviation and the minimum and maximum pre and post-processing method. Note that
these two forms of pre and post-processing will affect the back-propagation algorithm for the
Jacobian matrix.

The mean and standard deviation pre and post-processing method

With this method the inputs are pre-processed so that the input signals have mean 0 and standard
deviation 1,

x̂i =
xi − ρ(xi)

σ(xi)
, (3.34)

for i = 1, . . . , n, and where xi are the inputs, x̂i are the input signals to the neural network, and
ρ(xi) and σ(xi) are an estimation of the mean and the standard deviation of the input variables,
respectively.

The output signals from the neural network are then post-processed to produce the outputs

yi = ρ(yi) + σ(yi)ŷi, (3.35)

for i = 1, . . . ,m, and where yi are the outputs, ŷi are the output signals from the network, and
ρ(yi) and σ(yi) are an estimation of the mean and the standard deviation of the output variables,
respectively.

The minimum and maximum pre and post-processing method

Here the inputs are pre-processed to produce input signals whose minimum and maximum values
are −1 and 1,
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x̂i = 2
xi −min (xi)

max (xi)−min (xi)
− 1, (3.36)

for i = 1, . . . , n, and where xi are the inputs, x̂i are the input signals to the network, and min (xi)
and max (xi) are an estimation of the minimum and the maximum values of the input variables,
respectively.

The output signals from the network are then post-processed to produce the outputs

yi = 0.5 (ŷi + 1) (max (yi)−min (yi)) + min (yi), (3.37)

for i = 1, . . . ,m, and where yi are the outputs, ŷi are the output signals from the network, and
min (yi) and max (yi) are an estimation of the minimum and the maximum values of the outputs
from the neural network, respectively.

3.3.6 Multilayer perceptron extensions

This Section describes some possible extensions for the multilayer perceptron. They include inde-
pendent parameters, boundary conditions and lower and upper bounds. In some situations these
extensions can improve the performance by the numerical method. In some other cases they allow
to deal with applications which would be untractable otherwise. In summary, this augmented
class of neural network might be able to span a more suited function space for some variational
problems.

Independent parameters

If some information not related to input-output relationships is needed, then the problem is said to
have independent parameters. They are not a part of the neural network, but they are associated to
it. The independent parameters can be grouped together in a q-dimensional vector β = (β1, . . . , βq).

Consequently, a multilayer perceptron with associated independent parameters spans a space
of functions V from an input X ⊆ Rn to an output Y ⊆ Rm, where n and m are the number of
inputs and outputs, respectively. The elements of this family of functions are parameterized by
both, the biases and synaptic weights vector, α = (α1, . . . , αp), and the independent parameters
vector, β = (β1, . . . , βq). The dimension of V is thus p + q, and the functions here are of the form

y : X → Y

x 7→ y(x;α, β).

Note that the total set of free parameters is composed by the biases and synaptic weights and
the independent parameters. The first group defines the output from the neural network for a
given input. The second group provides some separate sort of information.

Examples of problems in which independent parameters are used can be found in Sections 7.3
and 6.2.1 .

Boundary conditions

If some outputs are specified for given inputs, then the problem is said to include boundary
conditions. A boundary condition between some input x = a and some output y = ya is written
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y(a) = ya. In order to deal with boundary conditions the output signals from the neural network
can be post-processed as follows

y(x;α, β) = ϕ0(x) + ϕ1(x)y(x;α, β), (3.38)

where the function ϕ0(x) is called a particular solution term and the function ϕ1(x) is called an
homogeneous solution term. The first must hold ϕ0(a) = ya if there is a condition y(a) = ya. The
second must hold ϕ1(a) = 0 if there is a condition y(a) = ya. It is easy to see that this approach
makes all the elements of the function space to satisfy the boundary conditions. It is important
to remark that the expressions of the particular and homogeneous solution terms depend on the
problem at hand.

For the simplest case of one input and one output variables and one boundary condition y(a) =
ya, a possible set of particular and homogeneous solution terms could be

ϕ0(x) = a, (3.39)
ϕ1(x) = x− a. (3.40)

In the situation of one input and one output variables and two conditions y(a) = ya and
y(b) = yb we could have

ϕ0(x) = ya +
yb − ya

b− a
x, (3.41)

ϕ1(x) = (x− a)(x− b). (3.42)

The particular and homogeneous solution terms might be difficult to derive if the number of
input and output variables is high and the number of boundary conditions is also high.

Also note that the Jacobian matrix for the multilayer perceptron will be affected if the problem
includes boundary conditions. The approach is to make use of the product rule for differentiation
in Equation (3.38)

Some examples of the use of boundary conditions for the multilayer perceptron can be found
in Sections 5.1, 5.2, 5.3 and 5.4.

Lower and upper bounds

If some output variables are restricted to fall in some interval, then the problem is said to have
lower and upper bounds. An easy way to treat lower and upper bounds is to post-process the
outputs from Equation (3.38) in the next way,

y(x;α, β) =


inf (y), y(x;α, β) < inf (y),
y(x;α, β), inf (y) ≤ y(x;α, β) ≤ sup (y),
sup (y), y(x;α, β) > sup (y),

(3.43)

where inf (y) and sup (y) represent the infimum and supremum of the output vector y, respectively.
Similarly, if some independent parameters are bounded they can be post-processed in the

following manner,

β =


inf (β), β < inf (β),
β, inf (β) ≤ β ≤ sup (β),
sup (β), β > sup (β),

(3.44)
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where inf (β) and sup (β) represent the infimum and supremum of the independent parameter
vector β, respectively.

Examples of problems with lower and upper bounds are found in Sections 6.2.1, or 8.2.1.

3.3.7 The input-output activity diagram

Following the contents of this section, an activity diagram for the input-output process in an
extended class of multilayer perceptron with a single hidden layer of neurons can be drawn as in
Figure 3.8.

Preprocess input
Mean and standard deviation

Minimum and maximum

Get net input signal to hidden layer

Get output signal from hidden layer

Get net input signal to output layer

Get output signal

Postprocess output signal
Mean and standard deviation

Minimum and maximum

Apply  boundary conditions
Homogeneous solution

Particular solution

Apply  lower and upper bounds
Lower bound
Upper bound

Figure 3.8: An activity diagram for the input-output process in the multilayer perceptron.
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3.4 The objective functional

In order to perform a particular task a multilayer perceptron must be associated an objective
functional. The objective functional defines the task the neural network is required to accomplish
and provides a measure of the quality of the representation that the network is required to learn.
The choice of a suitable objective functional for a multilayer perceptron depends on the variational
problem at hand. The learning problem in the multilayer perceptron is thus formulated in terms
of the minimization of the objective functional.

3.4.1 The variational problem

Traditionally, the learning problem for the multilayer perceptron has been formulated in terms of
the minimization of an error function of the free parameters in the neural network, in order to fit
the neural network to an input-target data set [15]. In that way, the only learning tasks allowed
for the multilayer perceptron are data modeling type problems.

In a variational formulation for neural networks, the concept of error function, e(α), is changed
by the concept or objective functional, F [y(x;α)] [66]. An objective functional for the multilayer
perceptron is of the form

F : V → R

y(x;α) 7→ F [y(x;α)].

The objective functional defines the task the that the neural network is required to accomplish
and provides a measure of the quality of the representation that the neural network is required
to learn. In this way, the choice of a suitable objective functional depends on the particular
application.

The learning problem for the multilayer perceptron can then be stated as the searching in the
neural network function space for an element y∗(x;α∗) at which the objective functional F [y(x;α)]
takes a maximum or a minimum value.

The tasks of maximization and minimization are trivially related to each other, since maxi-
mization of F is equivalent to minimization of −F , and vice versa. On the other hand, a minimum
can be either a global minimum, the smallest value of the functional over its entire domain, or a
local minimum, the smallest value of the functional within some local neighborhood.

As we will see, changing the concept of error function by the concept of objective functional
allows us to extend the number of learning tasks for the multilayer perceptron to any variational
problem. Some examples are optimal control problems [62], inverse problems [26] or optimal shape
design problems [64].

The simplest variational problems are those in which no constraints are imposed on the solution.
An unconstrained variational problem of historical interest is the brachistochrone problem [36].
However, there are many applications of the calculus of variations in which constraints are imposed.
Such constraints are expressed as functionals. A classical constrained problem in the calculus of
variations is the isoperimetric problem [36].

Unconstrained problems

The simplest variational problems for the multilayer perceptron are those in which no constraints
are posed on the solution y∗(x;α∗). In this way, the general unconstrained variational problem for
the multilayer perceptron can be formulated as follows:
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Problem 3 (Unconstrained variational problem). Let V be the space of all functions y(x;α)
spanned by a multilayer perceptron, and let s be the dimension of V . Find a function y∗(x;α∗) ∈ V
for which the functional

F [y(x;α)],

defined on V , takes on a minimum value.

In other words, the unconstrained variational problem for the multilayer perceptron is stated
in terms of the minimization of the objective functional associated to the neural network [66].

In Chapter 4 we use a multilayer perceptron to solve function regression and pattern recognition
problems. That are unconstrained variational problems. The geodesic problem and the brachis-
tochrone problem, which are solved in Chapter 5 are also examples of unconstrained variational
problems.

Constrained problems

A variational problem for the multilayer perceptron can be specified by a set of constraints, which
are equalities or inequalities that the solution y∗(x;α∗) must satisfy. Such constraints are expressed
as functionals. Thus, the general constrained variational problem for the multilayer perceptron
can be formulated as follows:

Problem 4 (Constrained variational problem). Let V be the space of all functions y(x;α) spanned
by a multilayer perceptron, and let s be the dimension of V . Find a function y∗(x;α∗) ∈ V such
that

Ci[y∗(x;α∗)] = 0,

for i = 1, . . . , l, and for which the functional

F [y(x;α)],

defined on V , takes on a minimum value.

In other words, the constrained variational problem for the multilayer perceptron consists of
finding a vector of free parameters which makes all the constraints to be satisfied and the objective
functional to be an extremum.

A common approach when solving a constrained variational problem is to reduce it into an
unconstrained problem. This can be done by adding a penalty term to the objective functional
for each of the constrains in the original problem. Adding a penalty term gives a large positive or
negative value to the objective functional when infeasibility due to a constrain is encountered.

For the minimization case, the general constrained variational problem for the multilayer per-
ceptron can be reformulated as follows:

Problem 5 (Reduced unconstrained variational problem). Let V be the space consisting of all
functions y(x;α) that a given multilayer perceptron can define, and let s be the dimension of V .
Find a function y∗(x;α∗) ∈ V for which the functional
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F [y(x;α)] +
l∑

i=1

ρi‖Ci[y(x;α)]‖2,

defined on V and with ρi > 0, for i = 1, . . . , l, takes on a minimum value.

The parameters ρi, for i = 1, . . . , l, are called the penalty term weights, being l the number of
constraints. Note that, while the squared norm of the constrained is the metric most used, any
other suitable metric can be used.

For large values of ρi, it is clear that the solution y∗(x;α∗) of Problem 5 will be in in a region
where Ci[y(x;α)], i = 1, . . . , l, are small. Thus, for increasing values of ρi, it is expected that the
the solution y∗(x;α∗) of Problem 5 will approach the constraints and, subject to being close, will
minimize the objective functional F [y(x;α)]. Ideally then, as ρi →∞, i = 1, . . . , l, the solution of
Problem 5 will converge to the solution of Problem 4 [69].

In Chapter 5 we use a multilayer perceptron to solve the catenary problem and the isoperimetric
problem. Other constrained problems are solved in Chapters 6 and 8.

3.4.2 The reduced function optimization problem

The objective functional, F [y(x;α)], has an objective function associated, f(α), which is defined
as a function of the free parameters in the neural network [66],

f : Rs → R

α 7→ f(α).

The objective function for the multilayer perceptron is represented as f(α), and can be visual-
ized as a hypersurface, with α1, . . . , αs as coordinates, see Figure 3.9.
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Figure 3.9: Geometrical representation of the objective function.
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The minimum or maximum value of the objective functional is achieved for a vector of free
parameters at which the objective function takes on a minimum or maximum value. Therefore,
the learning problem in the multilayer perceptron, formulated as a variational problem, can be
reduced to a function optimization problem [66].

Problem 6 (Reduced function optimization problem for the multilayer perceptron). Let Rs be
the space of all vectors α spanned by the free parameters of a multilayer perceptron. Find a vector
α∗ ∈ Rs for which the function

f(α),

defined on Rs, takes on a minimum value.

In this sense, a variational formulation for the multilayer perceptron provides a direct method
for solving variational problems. The universal approximation properties for the multilayer per-
ceptron cause neural computation to be a very appropriate paradigm for the solution of these
problems.

3.4.3 The objective function gradient

We have seen that the objective functional F [y(x;α)] of the multilayer perceptron has an objective
function f(α) associated, which is defined as a function of the free parameters of the neural
network; the learning problem in the multilayer perceptron is solved by finding the values of the
free parameters which make the objective function to be an extremum.

The use of gradient information is of central importance in finding training algorithms which
are sufficiently fast to be of practical use for large-scale applications. For a multilayer perceptron,
the gradient vector ∇ of the objective function f(α1, . . . , αs) is written:

∇f(α1, . . . , αs) =
(

∂f

∂α1
, . . . ,

∂f

∂αs

)
. (3.45)

Figure 3.10 represents the objective function gradient vector for the hypothetical case of a
multilayer perceptron with two free parameters.

When the desired output of the multilayer perceptron for a given input is known, the objec-
tive function gradient can usually be found analytically using back-propagation. In some other
circumstances exact evaluation of the gradient is not possible and numerical differentiation must
be used.

The back-propagation algorithm for the calculus of the objective function gradient

Here we obtain the objective function gradient ∇f(α) for the multilayer perceptron using the back-
propagation algorithm. Results are derived for the one hidden layer perceptron shown in Figure
3.7, but they can be easily generalized to networks with several hidden layers of neurons.

In a one hidden layer perceptron, the net input signal for each neuron in the hidden layer is of
the form

u
(1)
j =

n∑
i=0

α
(1)
ji xi, (3.46)
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Figure 3.10: Illustration of the objective function gradient vector.

for j = 1, . . . , h1. In the same way, the net input signal for each neuron in the output layer is of
the form

u
(2)
k =

h1∑
j=0

α
(2)
kj y

(1)
j , (3.47)

for k = 1, . . . ,m.
The net input signal of neuron j in the hidden layer is transformed by an activation function

g(1) to give the activation y
(1)
j

y
(1)
j = g(1)(u(1)

j ), (3.48)

for j = 1, . . . , hl. Similarly, for the output layer,

yk = g(2)(u(2)
k ), (3.49)

for k = 1, . . . ,m. As we said before, the learning algorithm will aim to find suitable values for
the free parameters in the neural network by optimizing the objective function f(α). On the
other hand, we consider objective functions which ca be expressed as a differentiable function of
the output signals y from the neural network. Therefore, the objective function of a multilayer
perceptron can be expressed as a function of the output signals, which depend in turn on the free
parameters

f = f(α1, . . . , αs; y1, . . . , ym). (3.50)

We want to find a procedure to evaluate the derivatives of the objective function f with respect
to the free parameters in the network α1, . . . , αs.
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First we obtain the activation of all hidden and output neurons by a consecutive applying of
(3.46), (3.48), (3.47) and (3.49). This process is often called feed-propagation, since it can be
considered as a feed flow of information through the neural network.

Consider now the evaluation of the derivative of the objective function f with respect to some
free parameter αji. f depends on the free parameter αji only though the net input signal uj to
neuron j. We can then apply the chain rule for partial derivatives to give, for the hidden layer

∂f

∂α
(1)
ji

=
∂f

∂u
(1)
j

∂u
(1)
j

∂α
(1)
ji

, (3.51)

for i = 1, . . . , n and j = 1, . . . , h1. Likewise, for the output layer,

∂f

∂α
(2)
kj

=
∂f

∂u
(2)
k

∂u
(2)
k

∂α
(2)
kj

, (3.52)

for j = 1, . . . , h1 and k = 1, . . . ,m. We now introduce the notation

δ ≡ ∂f

∂u
. (3.53)

The quantity δ is called back-propagation error, and it is considered for each neuron in the
neural network. Therefore, the definition of the back-propagation error for a neuron in the hidden
layer is

δ
(1)
j ≡ ∂f

∂u
(1)
j

, (3.54)

for j = 1, . . . , h1. The definition of the back-propagation error for a neuron in the output layer is

δ
(2)
k ≡ ∂f

∂u
(2)
k

, (3.55)

for k = 1, . . . ,m. On the other hand, using Equation (3.46) we can write, for the hidden layer

∂u
(1)
j

∂α
(1)
ji

= xi, (3.56)

for i = 1, . . . , n and j = 1, . . . , h1. Similarly, using Equation (3.47) we can write, for the output
layer,

∂u
(2)
k

∂α
(2)
kj

= y
(1)
j , (3.57)

for j = 1, . . . , h1 and k = 1, . . . ,m. Substituting (3.54) and (3.56) in (3.51) we obtain, for the
hidden layer
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∂f

∂α
(1)
ji

= δ
(1)
j xi, (3.58)

for i = 1, . . . , n and j = 1, . . . , h1. Likewise, substituting (3.55) and (3.57) in (3.52) we obtain, for
the output layer

∂f

∂α
(2)
kj

= δ
(2)
k y

(1)
j , (3.59)

for j = 1, . . . , h1 and k = 1, . . . ,m. Thus, to evaluate the required derivatives, we only need to
evaluate the value of δ for each neuron in the neural network and then to apply (3.54) and (3.55).

The evaluation of δ
(2)
k for the output neurons is quite simple. From the definition in Equation

(3.54) we have

δ
(2)
k ≡ ∂f

∂u
(2)
k

=
∂f

∂y
(2)
k

∂yk
(2)

∂u
(2)
k

= g′(2)(u(2)
k )

∂f

∂y
(2)
k

, (3.60)

for k = 1, . . . ,m. To evaluate δ
(1)
j for the hidden neurons we make use of the chain rule for partial

derivatives,

δ
(1)
j ≡ ∂f

∂u
(1)
j

=
m∑

k=1

∂f

∂u
(2)
k

∂u
(2)
k

∂u
(1)
j

, (3.61)

for j = 1, . . . , h1. Substituting now the definition of δ for the neurons in the output layer given in
(3.55) into (3.61), and making use of (3.46) and (3.48), we obtain

δ
(1)
j = g′(1)(u(1)

j )
m∑

k=1

α
(2)
kj δ

(2)
k , (3.62)

for j = 1, . . . , h1. We can summarize the back-propagation procedure to evaluate the derivatives
of the objective function with respect to the free parameters in just four steps:

1. Apply an input vector x to the neural network and feed-propagate it using (3.46), (3.48),
(3.47) and (3.49) to find the activation of all hidden and output neurons.

2. Evaluate the errors δ
(2)
k for all output neurons using (3.60).
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3. Back-propagate the errors δ
(2)
k by using (3.62) to obtain δ

(1)
j for each hidden neuron in the

neural network.

4. Use (3.54) and (3.55) to evaluate the required derivatives of the objective function with
respect to the free parameters in the hidden and output layers, respectively.

A C++ implementation of this algorithm for some particular objective functions can be found in
the classes SumSquaredError, MeanSquaredError, RootMeanSquaredError, NormalizedSquaredError,
MinkowskiError and RegularizedMeanSquaredError of Flood [61].

In Sections 4.2 and 4.3 we make use of the back-propagation algorithm to obtain the objective
function gradient of the sum squared error, which is a common objective functional for function
regression and pattern recognition problems.

Numerical differentiation for the calculus of the objective function gradient

There are many applications when it is not possible to obtain the objective function gradient∇f(α)
using the back-propagation algorithm, and it needs to be computed numerically. This can be done
by perturbing each free parameter in turn, and approximating the derivatives by using the finite
differences method

∂f

∂αi
=

f(αi + ε)− f(αi)
ε

+O(ε), (3.63)

for i = 1, . . . , s and for some small numerical value of ε.
The accuracy of the finite differences method can be improved significantly by using symmetrical

central differences of the form

∂f

∂αi
=

f(αi + ε)− f(αi − ε)
2ε

+O(ε2), (3.64)

also for i = 1, . . . , s and for some small numerical value of ε.
We have seen that the derivatives of the objective function with respect to the free parameters

in the hidden layer can be expressed efficiently through the relation

∂f

∂α
(1)
ji

=
∂f

∂u
(1)
j

xi, (3.65)

for i = 1, . . . , n and j = 1, . . . , h1. Similarly, the derivatives of the objective function with respect
to the free parameters in the output layer are given by

∂f

∂α
(2)
kj

=
∂f

∂u
(2)
k

y
(1)
j , (3.66)

for j = 1, . . . , h1 and k = 1, . . . ,m. Instead of using the technique of central differences to evaluate
the derivatives ∂f/∂α directly, we can use it to estimate ∂f/∂u since

∂f

∂ui
=

f(ui + ε)− f(ui − ε)
2ε

+O(ε2), (3.67)
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for i = 1, . . . , r, where r = h1 + m is the total number of neurons in the network. We can then
make use of Equations (3.65) and (3.66) to evaluate the required derivatives.

In Sections 5.2 and 5.4 we make use of numerical differentiation to obtain the objective func-
tion gradient of the objective functionals for the brachistochrone and the isoperimetric problems,
respectively.

In a software implementation, when possible, derivatives of the objective function f with respect
to the free parameters in the network α should be evaluated using back-propagation, since this
provides the greatest accuracy and numerical efficiency.

The source code for the calculus of the gradient vector by means of central differences is within
the class ObjectiveFunctional of Flood [61].

3.4.4 The objective function Hessian

There are some training algorithms which also make use of the Hessian matrix of the objective
function to search for an optimal set of free parameters. The Hessian matrix of the objective
function is written

Hf(α) =


∂2f

∂α2
1

· · · ∂2f

∂α1∂αn
...

. . .
...

∂2f

∂αn∂α1
· · · ∂2f

∂α2
n

 (3.68)

The most general scheme to calculate the Hessian matrix is to apply numerical differentiation.
However, there are some objective functions which have an analytical solution for the Hessian
matrix, which can be calculated using a back-propagation algorithm [15].

Numerical differentiation for the calculus of the objective function Hessian

As it happens for the gradient vector, there are many applications when analytical evaluation of
the Hessian is not possible, and it must be computed numerically. This can be done by perturbing
each argument element in turn, and approximating the derivatives by using the central differences
method

Hij =
∂2f

∂αi∂αj

=
f(αi + ε, αj + ε)

4ε2
− f(αi + ε, αj − ε)

4ε2

− f(αi − ε, αj + ε)
4ε2

+
f(αi − ε, αj − ε)

4ε2
+O(ε2), (3.69)

for i, j = 1, . . . , s, and where s is the number of free parameters in the neural network.
Equation (3.69) is implemented in the class ObjectiveFunctional of Flood [61].

3.5 The training algorithm

The procedure used to carry out the learning process in a neural network is called the training
algorithm. There are many different training algorithms for the multilayer perceptron. Some of
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the most used are the quasi-Newton method or the evolutionary algorithm.
As we said in Chapter 3.4, the learning problem in the multilayer perceptron, formulated as a

variational problem, can be reduced to a function optimization problem. The training algorithm
is entrusted to solve the reduced function optimization problem, by adjusting the parameters in
the neural network so as to optimize the objective function.

3.5.1 The function optimization problem

The learning problem in the multilayer perceptron has been reduced to the searching in an s-
dimensional space for a parameter vector α∗ for which the objective function f takes a maximum
or a minimum value.

The tasks of maximization and minimization are trivially related to each other, since maxi-
mization of f(α) is equivalent to minimization of −f(α), and vice versa.

On the other side, a minimum can be either a global minimum, the smallest value of the
function over its entire range, or a local minimum, the smallest value of the function within some
local neighborhood. Finding a global minimum is, in general, a very difficult problem [101].

Consider an objective function

f : Rs → R

α 7→ f(α)

continuous, derivable, and with continuous derivatives.
The global minimum condition for the parameter vector α∗ is stated as

f(α∗) ≤ f(α), (3.70)

for all α1, . . . , αs in the parameter space.
On the other hand, the necessary local minimum condition for the parameter vector α∗ is stated

as

∇f(α∗) = 0. (3.71)

The objective function is, in general, a non linear function of the parameters. As a consequence,
it is not possible to find closed training algorithms for the minima. Instead, we consider a search
through the parameter space consisting of a succession of steps of the form

α(i+1) = α(i) + ∆α(i), (3.72)

where i labels the iteration step, or epoch. The quantity ∆α(i) is called parameter vector increment.
Different training algorithms involve different choices for this vector.

In this way, to train a multilayer perceptron we start with an initial estimation of the parameter
vector α(0) (often chosen at random) and we generate a sequence of parameter vectors α(1), α(2), . . .,
so that the objective function f is reduced at each iteration of the algorithm, that is

f(α(i+1)) < f(α(i)). (3.73)

The training algorithm stops when a specified condition is satisfied. Some stopping criteria
commonly used are [27]:
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1. A maximum number of epochs is reached.

2. A maximum amount of computing time has been exceeded.

3. Evaluation has been minimized to a goal value.

4. Evaluation improvement in one epoch is less than a set value.

5. The norm of the objective function gradient falls below a goal.

Figure 3.11 is a state diagram of this iterative procedure, showing states and transitions in the
training process of a multilayer perceptron.

Init free parameters

Evaluate objective function

Improve free parameters

Stopping criteria = true
Stopping criteria = false

Figure 3.11: Training process in the multilayer perceptron.

The training process is determined by the way in which the adjustment of the parameters in
the neural network takes place. There are many different training algorithms, which have a variety
of different computation and storage requirements. Moreover, there is not a training algorithm
best suited to all locations [101].

Training algorithms might require information from the objective function only, the gradient
vector of the objective function or the Hessian matrix of the objective function [83]. These methods,
in turn, can perform either global or local optimization.

Zero-order training algorithms make use of the objective function only. The most significant
zero-order training algorithms are stochastic, which involve randomness in the optimization pro-
cess. Examples of these are random search and evolutionary algorithms[39] [34] or particle swarm
optimization [52], which are global optimization methods .

First-order training algorithms use the objective function and its gradient vector [11]. Examples
of these are gradient descent methods, conjugate gradient methods, scaled conjugate gradient
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methods [75] or quasi-Newton methods. Gradient descent, conjugate gradient, scaled conjugate
gradient and quasi-Newton methods are local optimization methods [69].

Second-order training algorithms make use of the objective function, its gradient vector and its
Hessian matrix [11]. Examples for second-order methods are Newton’s method and the Levenberg-
Marquardt algorithm [40]. Both of them are local optimization methods [69].

3.5.2 Random search

Random search is the simplest possible training algorithm for the multilayer perceptron. It is a
stochastic method which requires information from the objective function only, and therefore a
zero order optimization method.

The random search method simply consists of sampling a stream parameter vectors

α(1), α(2), . . .

distributed at random, and while evaluating their objective function

f (1)(α(1)), f (2)(α(2)), . . .

until a stopping criterium is satisfied.
Random search can be performed either using a uniform distribution, i.e., with constant prob-

ability, or using a normal distribution, i.e., with probability defined by a mean and an standard
deviation.

Unfortunately, convergence is extremely slow in most cases, so this training algorithm is only
in practice used to obtain a good initial guess for other more efficient methods. A C++ implemen-
tation of random search can be found in the class RandomSearch of Flood [61].

3.5.3 Gradient descent

Gradient descent, sometimes also known as steepest descent, is a local method which requires
information from the gradient vector, and hence it is a first order training algorithm. It acts in a
deterministic manner.

The method begins at a point α(0) and, until a stopping criterium is satisfied, moves from
α(i) to α(i+1) along the line extending from α(i) in the direction of −∇f(α(i)), the local downhill
gradient. The gradient vector of the objective function for the multilayer perceptron is described
in Section 3.4.3.

Let denote g ≡ ∇f(α) the gradient vector. Therefore, starting from a parameter vector α(0),
the gradient descent method takes the form of iterating

α(i+1) = α(i) − η(i)g(i), (3.74)

for i = 0, 1, . . ., and where the parameter η(i) is called the training rate. This value can either set
to a fixed value or found by line minimization along the train direction at each epoch. Provided
that the train rate is well chosen, the value of f will decrease at each successive step, eventually
reaching to vector of parameters α∗ at which some stopping criterium is satisfied.

The choose of a suitable value for a fixed train rate presents a serious difficulty. If η is too
large, the algorithm may overshoot leading to an increase in f and possibly to divergent oscillations,
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resulting in a complete breakdown in the algorithm. Conversely, if η is chosen to be very small
the search can proceed extremely slowly, leading to long computation times. Furthermore, a good
value for η will typically change during the course of training [15].

For that reason, an optimal value for the train rate obtained by line minimization at each
successive epoch is generally preferable. Here a search is made along the train direction to determine
the optimal train rate, which minimizes the objective function along that line. Section 3.5.7
describes different one-dimensional minimization algorithms.

Figure 3.12 is a state diagram for the training process of a neural network with gradient descent.
Improvement of the parameters is performed by obtaining first the gradient descent train direction
and then a suitable training rate.

Init free parameters

Evaluate objective function

Improve free parameters
Get gradient descent train direction

Get train rate

Stopping criteria = true
Stopping criteria = false

Figure 3.12: Training process with the gradient descent training algorithm.

The gradient descent training algorithm has the severe drawback of requiring many iterations
for functions which have long, narrow valley structures. Indeed, the local downhill gradient is
the direction in which the objective function decreases most rapidly, but this does not necessarily
produce the fastest convergence. See [69] for a detailed discussion of this optimization method. The
class GradientDescent within Flood [61] contains a C++ source of the gradient descent training
algorithm.

3.5.4 Newton’s method

The Newton’s method is a class of local algorithm which makes use of the Hessian matrix of the
objective function. In this way it is a second order method. On the other hand, the Newton’s
method behaves in a deterministic fashion.

Consider the quadratic approximation of f at α = α(i) using the Taylor’s series expansion
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f(α) = f(α(i)) +∇f(α− α(i)) +
1
2
(α− α(i))T ·Hf(α(i)) · (α− α(i)), (3.75)

where Hf(α(i)) is the Hessian matrix of f evaluated at the point α(i). The Hessian matrix of the
objective function for the multilayer perceptron is described in Section 3.4.4.

By setting ∇f(α) in Equation (3.75) equal to 0 for the minimum of f(α), we obtain

∇f(α) = ∇f(α(i)) + Hf(α(i)) · (α− α(i))
= 0. (3.76)

If Hf(α(i)) is not singular, Equation (3.76) leads to an expression for the location of the
minimum of the objective function,

α∗ = α(i) −H−1f(α(i)) · ∇f(α(i)), (3.77)

where H−1f(α(i)) is the inverse of the Hessian matrix of f evaluated at the point α(i).
Equation (3.77) would be exact for a quadratic objective function. However, since higher order

terms have been neglected, this is to be used iteratively to find the optimal solution α∗. Let denote
g ≡ ∇f(α) and H ≡ Hf(α). Therefore, starting from a parameter vector α(0), the iterative formula
for the Newton’s method can be written

α(i+1) = α(i) −H−1(i)g(i), (3.78)

for i = 0, 1, . . . and until some stopping criterium is satisfied.
The vector H−1g is known as the Newton’s increment. But note that this increment for the

parameters may move towards a maximum or a saddle point rather than a minimum. This occurs
if the Hessian is not positive definite, so that there exist directions of negative curvature. Thus,
the objective function evaluation is not guaranteed to be reduced at each iteration. Moreover, the
Newton’s increment may be sufficiently large that it takes us outside the range of validity of the
quadratic approximation. In this case the algorithm could become unstable.

In order to prevent such troubles, the Newton’s method in Equation (3.5.4) is usually modified
as

α(i+1) = α(i) − η(i)H−1(i)g(i), (3.79)

where the training rate η(i) can either set to a fixed value or found by line minimization. See
Section 3.5.7 for a description of several one-dimensional minimization algorithms.

In Equation (3.79), the vector H−1g is now called the Newton’s train direction. The sequence
of points α(0), α(1), . . . can be shown here to converge to the actual solution α∗ from any initial
point α(0) sufficiently close the to solution, and provided that H is nonsingular.

The state diagram for the training process with the Newton’s method is depicted in Figure
3.12. Here improvement of the parameters is performed by obtaining first the Newton’s method
train direction and then a suitable training rate.

There are still several difficulties with such an approach, however. First, an exact evaluation
of the Hessian matrix is computationally demanding. This evaluation would be prohibitively
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Init free parameters

Evaluate objective function

Improve free parameters
Get Newton’s method train direction

Get train rate

Stopping criteria = true
Stopping criteria = false

Figure 3.13: Training process with the Newton’s method.

expensive if done at each stage of an iterative algorithm. Second, the Hessian must be inverted,
and so is also computationally demanding. In [69] a complete description of the Newton’s method
can be found. Also, a C++ implementation of this training algorithm is included within the class
NewtonMethod of Flood [61]

3.5.5 Conjugate gradient

Conjugate gradient is a local algorithm for an objective function whose gradient can be computed,
belonging for that reason to the class of first order methods. According to its behavior, it can be
described as a deterministic method.

The conjugate gradient method can be regarded as being somewhat intermediate between the
method of gradient descent and Newton’s method [69]. It is motivated by the desire to accelerate
the typically slow convergence associated with gradient descent while avoiding the information
requirements associated with the evaluation, storage, and inversion of the Hessian matrix as re-
quired by the Newton’s method. In the conjugate gradient algorithm search is performed along
conjugate directions, which produces generally faster convergence than steepest descent directions
[27]. These train directions are conjugated with respect to the Hessian matrix. A set of vectors dk

are said to be conjugated with respect to the matrix H if only if

dT
i Hdj = 0, (3.80)

for all i 6= j and provided that H is not singular. An elemental property of a set of conjugate
directions is that these vectors are linearly independent. Therefore, if the number of parameters
is s, the maximum size of a set of conjugate directions is also s.
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Let denote g ≡ ∇f(α) and h the train direction vector. Then, starting with an initial parameter
vector α(0) and an initial train direction vector h(0) = −g(0), the conjugate gradient method
constructs a sequence of train directions from the recurrence

h(i+1) = g(i+1) + γ(i)h(i), (3.81)

for i = 0, 1, . . ..
The parameters can then be improved according to the formula

α(i+1) = α(i) + η(i)h(i), (3.82)

also for i = 0, 1, . . ., and where η(i) is the train rate, which is usually found by line minimization.
The various versions of conjugate gradient are distinguished by the manner in which the pa-

rameter γ(i) is constructed. For the Fletcher-Reeves update the procedure is [33]

γ
(i)
FR =

g(i+1)g(i+1)

g(i)g(i)
, (3.83)

where γ
(i)
FR is called the Fletcher-Reeves parameter.

For the Polak-Ribiere update the procedure is

γ
(i)
PR =

(g(i+1) − g(i))g(i+1)

g(i)g(i)
, (3.84)

where γ
(i)
PR is called the Polak-Ribiere parameter.

It can be shown that both the Fletcher-Reeves and the Polak-Ribiere train directions indeed
satisfy Equation (3.82).

There is some evidence that the Polak-Ribiere formula accomplishes the transition to further
iterations more efficiently: When it runs out of steam, it tends to reset the train direction h to be
down the local gradient, which is equivalent to beginning the conjugate-gradient procedure again
[83].

For all conjugate gradient algorithms, the train direction is periodically reset to the negative of
the gradient. The standard reset point occurs every s epochs, being s is the number of parameters
in the multilayer perceptron [82].

Figure 3.14 is a state diagram for the training process with the conjugate gradient. Here
improvement of the parameters is done by first computing the conjugate gradient train direction
and then a suitable train rate in that direction.

Conjugate gradient methods have proved to more effective than gradient descent or the New-
ton’s method in dealing with general objective functions. A detailed discussion of the conjugate
gradient method can be found in [69]. The library Flood also implements this method in the C++
class ConjugateGradient [61].

3.5.6 Quasi-Newton method

The quasi-Newton method can be classified as a local, first order and deterministic training algo-
rithm for the multilayer perceptron.
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Figure 3.14: Training process with the conjugate gradient training algorithm.

In Section 3.5.4 it was argued that a direct application of the Newton’s method, as given by
Equation (3.79), would be computationally prohibitive since it would require too many operations
to evaluate the Hessian matrix and compute its inverse. Alternative approaches, known as quasi-
Newton or variable metric methods, are based on Equation (3.79), but instead of calculating the
Hessian directly, and then evaluating its inverse, they build up an approximation to the inverse
Hessian over a number of steps.

The Hessian matrix is composed of the second partial derivatives of the objective function. The
basic idea behind the quasi-Newton or variable metric methods is to approximate H−1 by another
matrix G, using only the first partial derivatives of f . If H−1 is approximated by G, the Newton
formula (3.79) can be expressed as

α(i+1) = α(i) − η(i)G(i)g(i), (3.85)

where η(i) can either set to a fixed value or found by line minimization.
Implementation of Equation (3.85) involves generating a sequence of matrices G which represent

increasingly accurate approximation to the inverse Hessian H−1, sing only information on the first
derivatives of the objective function. The problems arising from Hessian matrices which are not
positive definite are solved by starting from a positive definite matrix (such as the unit matrix)
and ensuring that the update procedure is such that the approximation to the inverse Hessian
is guaranteed to remain positive definite. The approximation G of the inverse Hessian must be
constructed so as to satisfy this condition also.

The two most commonly used update formulae are the Davidon-Fletcher-Powel (DFP) algo-
rithm (sometimes referred to as simply Fletcher-Powel (FP) algorithm) and the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm.

The DFP algorithm is given by
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G(i+1) = G(i)

+
(α(i+1) − α(i))⊗ (α(i+1) − α(i))
(α(i+1) − α(i)) · (g(i+1) − g(i))

+

[
G(i) · (g(i+1) − g(i))

]
⊗
[
G(i) · (g(i+1) − g(i))

]
(g(i+1) − g(i)) ·G(i) · (g(i+1) − g(i))

, (3.86)

where ⊗ denotes the outer or direct product of two vectors, which is a matrix: The ij component
of u⊗ v is uivj .

The BFGS algorithm is exactly the same, but with one additional term

G(i+1) = G(i)

+
(α(i+1) − α(i))⊗ (α(i+1) − α(i))
(α(i+1) − α(i)) · (g(i+1) − g(i))

+

[
G(i) · (g(i+1) − g(i))

]
⊗
[
G(i) · (g(i+1) − g(i))

]
(g(i+1) − g(i)) ·G(i) · (g(i+1) − g(i))

+
[
(g(i+1) − g(i)) ·G(i) · (g(i+1) − g(i))

]
u⊗ u, (3.87)

where the vector u is given by

u =
(α(i+1) − α(i))

(α(i+1) − α(i)) · (g(i+1) − g(i))

− G(i) · (g(i+1) − g(i))
(g(i+1) − g(i)) ·G(i) · (g(i+1) − g(i))

. (3.88)

It has become generally recognized that, empirically, the BFGS scheme is superior than the
DFP scheme [83].

A state diagram of the training process of a multilayer perceptron is depicted in Figure 3.15.
Improvement of the parameters is performed by first obtaining the quasi-Newton train direction
and then finding a satisfactory train rate.

The quasi-Newton method is the algorithm of choice in most of the applications included in this
PhD Thesis. This is discussed in detail in [69]. A software implementation of the quasi-Newton
method in the C++ programming language can be found in the QuasiNewtonMethod class of
Flood [61].

3.5.7 One-dimensional minimization algorithms

The basic schema of most the training algorithms for the multilayer perceptron is to produce a
sequence of improved approximations to the optimal parameter vector according to the following
basis:

1. Start with an initial trial vector α(0).

2. Find a suitable train direction d(0) in the general direction of the optimum.

3. Find an appropriate train rate η(0) for movement along that train direction.
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Figure 3.15: Training process with the quasi-Newton method.

4. Obtain the new approximation α(1).

5. Test whether any stopping criteria is satisfied. Otherwise, repeat step 2 onward.

The train rate in step 3 can either set to a fixed value or found by line minimization along
the train direction at each epoch. In general, an optimal value for the train rate obtained by line
minimization at each successive epoch is preferable.

Line minimization algorithms begin by locating an interval in which the minimum of the objec-
tive function along occurs. A minimum is known to be bracketed when there is a triplet of points
a < b < c such that f(a) > f(b) < f(c). In this case we know that f has a minimum in the interval
(a, c).

The golden section method brackets that minimum until the distance between the two outer
points in the bracket is less than a defined tolerance [83].

The Brent’s method performs a parabolic interpolation until the distance between the two outer
points defining the parabola is less than a tolerance [83].

Flood implements the golden section and the Brent’s method inside the C++ classes GradientDescent,
NewtonMethod, ConjugateGradient and QuasiNewtonMethod of Flood [61].

3.5.8 Evolutionary algorithm

A global training algorithm for the multilayer perceptron is the evolutionary algorithm, a class
of which is the genetic algorithm. This is a stochastic method based on the mechanics of natu-
ral genetics and biological evolution. The evolutionary algorithm requires information from the
objective function only, and therefore is a zero order method.

The evolutionary algorithm can be used for problems that are difficult to solve with traditional
techniques, including problems that are not well defined or are difficult to model mathematically.
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It can also be used when computation of the objective function is discontinuous, highly nonlinear,
stochastic, or has unreliable or undefined derivatives.

This Section describes a quite general evolutionary algorithm with fitness assignment, selection,
recombination and mutation. Different variants on that training operators are also explained in
detail. All is implemented in the class EvolutionaryAlgorithm of the C++ library Flood [61].

Evolutionary algorithms operate on a population of individuals applying the principle of survival
of the fittest to produce better and better approximations to a solution. At each generation, a new
population is created by the process of selecting individuals according to their level of fitness in the
problem domain, and recombining them together using operators borrowed from natural genetics.
The offspring might also undergo mutation. This process leads to the evolution of populations
of individuals that are better suited to their environment than the individuals that they were
created from, just as in natural adaptation [81]. A state diagram for the training process with the
evolutionary algorithm is depicted in Figure 3.5.8.

Create initial population

Evaluate objective function

Generate new population

Perform fitness assignment
Perform selection

Perform recombination
Perform mutation

Selective pressure
Recombination size

Mutation rate
Mutation range

Stopping criteria = true
Stopping criteria = false

Choose best individual

Figure 3.16: Training process with the evolutionary algorithm.
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Next the training operators for the evolutionary algorithm together with their corresponding
training parameters are described in detail.

Initial population

The evolutionary algorithm starts with an initial population of individuals, represented by vectors
of parameters and often chosen at random

P(0) =

 α
(0)
11 . . . α

(0)
1s

. . . . . . . . .

α
(0)
N1 . . . α

(0)
Ns

 ,

where P is called the population matrix. The number of individuals in the population N is called
the population size.

The objective function is evaluated for all the individuals

f (0) = {f (0)
1 (α(0)

1 ), . . . , f (0)
N (α(0)

N )}, (3.89)

being f the so called the evaluation vector. The individual with best evaluation α∗ is then chosen
and stored.

Fitness assignment

If no stopping criterium is met the generation of a new population P(1) starts by performing fitness
assignment to the old population P(0).

Φ(0) = {Φ(0)
1 , . . . ,Φ(0)

N }, (3.90)

where Φ is called the fitness vector.
There are many methods of computing the fitness of the population. Proportional fitness as-

signment gives each individual a fitness value dependent on its actual objective function evaluation.
In rank-based fitness assignment the evaluation vector is sorted. The fitness assigned to each indi-
vidual depends only on its position in the individuals rank and not on the actual objective function
value. Rank-based fitness assignment behaves in a more robust manner than proportional fitness
assignment and, thus, is the method of choice [8] [100].

Linear ranking assigns a fitness to each individual which is linearly proportional to its rank
[81]. This operator is controlled by a single parameter called selective pressure. Linear ranking
allows values for the selective pressure in the interval [1, 2].

Consider N the number of individuals in the population, ri the rank of some individual i in
the population, where the least fit individual has r = 1 and the fittest individual has r = N , and
p the selective pressure. The fitness value for that individual is calculated as:

Φi(ri) = 2− p + 2(p− 1)
ri − 1
N − 1

. (3.91)
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Selection

After fitness assignment has been performed, some individuals in the population are selected for
recombination, according to their level of fitness [9] [8]. Selection determines which individuals are
chosen for recombination and how many offspring each selected individual produces,

S(0) = {S(0)
1 , . . . , S

(0)
N }, (3.92)

where S is called the selection vector. The elements of this vector are boolean values, that is, an
individual can be either selected for recombination (true) or not (false).

The simplest selection operator is roulette-wheel, also called stochastic sampling with replace-
ment [9]. The individuals are mapped to contiguous segments of a line, such that each individual’s
segment is equal in size to its fitness. A random number is generated and the individual whose
segment spans the random number is selected. The process is repeated until the desired number
of individuals is obtained (called mating population). This technique is analogous to a roulette
wheel with each slice proportional in size to the fitness, see Figure 3.17.
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Figure 3.17: Illustration the roulette wheel selection method.

A better selection operator might be stochastic universal sampling [81]. The individuals are
mapped to contiguous segments of a line, such that each individual’s segment is equal in size to
its fitness exactly as in roulette-wheel selection. Here equally spaced pointers are placed over the
line as many as there are individuals to be selected. If the number of individuals to be selected is
M , then the distance between the pointers are 1/M and the position of the first pointer is given
by a randomly generated number in the range [0, 1/M ]. Figure 3.18 illustrates this method.
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Figure 3.18: Illustration of the stochastic universal sampling selection method.
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Recombination

Recombination produces a population matrix by combining the parameters of the selected indi-
viduals,

P =

 α11 . . . α1s

. . . . . . . . .
αN1 . . . αNs


There are also many operators to perform recombination. Two of the most used are line

recombination and intermediate recombination. Both line and intermediate recombination are
controlled by a single parameter called recombination size, denoted d and with allowed values
equal or greater than 0. In both operators, the recombination size defines the size of the area for
possible offspring. A value of d = 0 defines the area for offspring the same size as the area spanned
by the parents. Because most variables of the offspring are not generated on the border of the
possible area, the area for the variables shrinks over the generations. This effect can be prevented
by using a larger recombination size. A value of d = 0.25 ensures (statistically), that the variable
area of the offspring is the same as the variable area spanned by the variables of the parents.

In line recombination the parameters of the offspring are chosen in the hyperline joining the
parameters of the parents [81]. Offspring are therefore produced according to

α
(offsprint)
i = aα

(parent1)
i + (1− a)α(parent2)

i , (3.93)

for i = 1, . . . , s and with a chosen at random in the interval [−d, 1 + d].
Figure 3.19 illustrates the line recombination training operator.
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Figure 3.19: Illustration of line recombination.

Similarly, in intermediate recombination the parameters of the offspring are chosen somewhere
in and around the hypercube defined by the parameters of the parents [81]. Here offspring is
produced according to the rule
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α
(offspring)
i = aiα

(parent1)
i + (1− ai)α

(parent2)
i , (3.94)

for i = 1, . . . , s and with ai chosen at random, for each i, in the interval [−d, 1 + d].
Figure 3.20 is an illustration of intermediate recombination.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

α
1

α 2

 

 

Parent
Son
Possible offspring

Figure 3.20: Illustration of intermediate recombination.

Mutation

Finally, some offspring undergo mutation in order to obtain the new generation,

P(1) =

 α
(1)
11 . . . α

(1)
1s

. . . . . . . . .

α
(1)
N1 . . . α

(1)
Ns


The probability of mutating a parameter is called the mutation rate and denoted p [81]. The

mutation rate allows values in the interval [0, 1]. On the other hand, mutation is achieved by
adding or subtracting a random quantity to the parameter. In this way, each parameter αi subject
to mutation is mutated to become α′i,

α′i = αi + ∆αi. (3.95)

The most common kinds of mutation procedures are uniform mutation and normal mutation.
Both the uniform and normal mutation operators are controlled by a single parameter called
mutation range, r, which allows values equal or greater than 0.

In uniform mutation, ∆αi is a number chosen at random in the interval [0, r]. Figure 3.21
illustrates the effect of uniform mutation for the case of two parameters.
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Figure 3.21: Illustration of uniform mutation.
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Figure 3.22: Illustration of normal mutation.

In normal mutation, ∆αi is a value obtained from a normal distribution with mean 0 and
standard deviation r. Figure 3.22 illustrates the effect of normal mutation for the case of two
parameters.

The whole fitness assignment, selection recombination and mutation process is repeated until
a stopping criterium is satisfied.
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Chapter 4

Modeling of data

Any learning task for the multilayer perceptron can be formulated as a variational problem. This
statement indeed includes the traditional applications for that neural network.

In this Chapter we express the data modeling theory from a variational point of view. Actual
case studies in the naval and aeronautical industries are also solved within this theory.

4.1 Problem formulation

Three main types of data modeling problems are function regression, pattern recognition and time
series prediction. Some theory and typical objective functionals related to the two former is next
explained.

4.1.1 Function regression

A traditional learning task for the multilayer perceptron is the function regression problem [41],
which can be regarded as the problem of approximating a function from data. Here the neural
network learns from knowledge represented by an input-target data set consisting of input-target
examples. The targets are a specification of what the response to the inputs should be,

{p(1), t(1)}, {p(2), t(2)}, ..., {p(Q), t(Q)}.

The basic goal in a function regression problem is to model the conditional distribution of the
output variables, conditioned on the input variables [15]. This function is called the regression
function.

A common feature of most input-target data sets is that the data exhibits an underlying
systematic aspect, represented by some function h(x), but is corrupted with random noise. The
central goal is to produce a model which exhibits good generalization, or in other words, one which
makes good predictions for new data. The best generalization to new data is obtained when the
mapping represents the underlying systematic aspects of the data, rather capturing the specific
details (i.e. the noise contribution) of the particular input-target set. More specificially, the goal
in a function regression problem for the multilayer perceptron is to obtain a function y∗(x) which
approximates the regression function h(x).

65
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One of the most common objective functionals in function regression problems is the sum
squared error, described in Section 4.1.3. Also, a very common objective functional for this type
of problems is the Minkowski error, which is described in Section 4.1.5.

Two frequent problems which can appear when solving a function regression problem are called
underfitting and overfitting. The best generalization is achieved by using a model whose complexity
is the most appropriate to produce an adequate fit of the data [27]. In this way underfitting
is defined as the effect of a generalization error increasing due to a too simple model, whereas
overfitting is defined as the effect of a generalization error increasing due to a too complex model.

While underfitting can be prevented by simply increasing the complexity of the neural network,
it is more difficult in advance to prevent overfitting. In Section 4.1.6 we introduce the regularization
theory, which is a method to prevent overfitting.

4.1.2 Pattern recognition

Another traditional learning task for the multilayer perceptron is the pattern recognition (or clas-
sification) problem [41]. The task of pattern recognition can be stated as the process whereby a
received pattern, characterized by a distinct set of features, is assigned to one of a prescribed num-
ber of classes. Here the neural network learns from knowledge represented by an input-target data
set consisting of input-target examples. The inputs include a set of features which characterize a
pattern. The targets specify the class that each pattern belongs to,

{p(1), t(1)}, {p(2), t(2)}, ..., {p(Q), t(Q)}.

The basic goal in a pattern recognition problem is to model the posterior probabilities of class
membership, conditioned on the input variables [15]. This function is called the pattern recognition
function, and it is denoted h(x).

Therefore, in order to solve a pattern recognition problem, the input space must be properly
separated into regions, where each region is assigned to a class. A border between two regions is
called a decision boundary. The goal in a pattern recognition problem for the multilayer perceptron
is thus to obtain a function y∗(x) as an approximation of the pattern recognition function h(x).

Two of the most used objective functionals in pattern recognition problems is the sum squared
error and the Minkowski error, which are described in Sections 4.1.3 and 4.1.5, respectively.

The problems of underfitting and overfitting also might occur when solving a pattern recognition
problem with the sum of squares error. Underfitting is explained in terms of a too simple decision
boundary which gives poor separation of the training data. On the other hand, overfitting is
explained in terms of a too complex decision boundary which achieves good separation of the
training data, but exhibits poor generalization.

A method for preventing underfitting and overfitting is to use a network that is just large
enough to provide an adequate fit [12]. An alternative approach to obtain good generalization is
by using regularization theory, which is described in Section 4.1.6.

4.1.3 The sum squared error

As it has been said, one of the most common objective functionals for the multilayer perceptron
used in function regression and pattern recognition is the sum squared error (SSE). This objective
functional is measured on an input target data set. The sum of the squares of the errors is used
instead of the errors absolute values because this allows the objective function to be treated as a
continuous differentiable function. It is written as a sum, over all the samples in the input-target
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data set, of a squared error defined for each sample separately. The expression for the sum squared
error is given by

E[y(x;α)] =
Q∑

q=1

(E(q)[y(x;α)])2

=
Q∑

q=1

m∑
k=1

(
yk(x(q);α)− t

(q)
k

)2

, (4.1)

where Q is the number of samples in the data set, n is the number of input variables and m is the
number of target variables.

There are several variant objective functionals of the sum squared error (SSE). Two of the most
used are the mean squared error (MSE) and the root mean squared error (RMSE). Both objective
functionals have the same properties than the sum squared error and the advantage that their
value do not grow with the size of the input-target data set [15].

The expression for the mean squared error is given, in terms of the sum squared error, by

MSE =
1
Q

SSE, (4.2)

and the expression for the root mean squared error is given by

RMSE =
√

1
Q

SSE, (4.3)

where, in both cases, Q is the number of samples in the data set.
The open source neural networks C++ library Flood includes the classes SumSquaredError,

MeanSquaredError and RootMeanSquaredError, which represent the concepts of the sum squared
error, mean squared error and root mean squared error functionals, respectively [61].

4.1.4 The normalized squared error

Another useful objective functional for data modeling problems is the normalized squared error,
which takes the form

E[y(x;α)] =

∑Q
q=1 ‖y(x(q);α)− t(q)‖2∑Q

q=1 ‖t(q) − t̄‖2
. (4.4)

The normalized squared error has the advantage that its value does not grow with the size
of the input-target data set. If it has a value of unity then the neural network is predicting
the data ’in the mean’, while a value of zero means perfect prediction of the data [15]. As a
consequence, the normalized squared error takes the same value for preprocessed data without pre
and postprocessing method in the multilayer perceptron and non-preprocessed data with pre and
postprocessing method in the multilayer perceptron.

Flood also includes the class NormalizedSquaredError to represent the concept of the normal-
ized squared error [61].
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4.1.5 The Minkowski error

One of the potential difficulties of the sum squared error objective functional is that it can receive
a too large contribution from points which have large errors [15]. If there are long tails on the
distribution then the solution can be dominated by a very small number of points which have
particularly large error. In such occasions, in order to achieve good generalization, it is preferable
to chose a more suitable objective functional.

We can derive more general error functions than the sum squared error for the case of a
supervised learning problem. Omitting irrelevant constants, the Minkowski R-error is defined as

E[y(x;α)] =
Q∑

q=1

(E(q)[y(x;α)])R

=
Q∑

q=1

m∑
k=1

|yk(x(q);α)− t
(q)
k |R. (4.5)

This reduces to the usual sum squared error when R = 2 [15].
The Minkowski error is also included in the Flood library, and it is implemented in the class

MinkowskiError [61].

4.1.6 Regularization theory

A problem is called well-possed if its solution meets existence, uniqueness and stability. A solution
is said to be stable when small changes in the independent variable x led to small changes in the
dependent variable y(x). Otherwise the problem is said to be ill-possed. In this way, the function
regression problem for a neural network with the sum squared error is ill-posed [24]. Indeed, the
solution exists for any network architecture, but for neural networks of big complexity it might be
non-unique and unstable.

In a function regression problem with the sum squared error or the Minkowski error objective
functionals, the best generalization is achieved by a model whose complexity is neither too small
nor too large [97]. Thus, a method for avoiding underfitting and overfitting is to use a neural
network that is just large enough to provide an adequate fit. Such a neural network will not have
enough power to overfit the data. Unfortunately, it is difficult to know beforehand how large a
neural network should be for a specific application [38].

An alternative approach to obtain good generalization in a neural network is to control its
effective complexity [96]. This can be achieved by choosing an objective functional which adds a
regularization term Ω to the error functional E [27]. The objective functional then becomes

F [y(x;α)] = E[y(x;α)] + νΩ[y(x;α)], (4.6)

where the parameter ν is called the regularization term weight. The value of Ω[y(x;α)] typically
depends on the mapping function y(x), and if the functional form Ω[y(x;α)] is chosen appropri-
ately, it can be used to control overfitting [15].

One of the simplest forms of regularization term is called parameter decay and consists on the
sum of the squares of the parameters in the neural network divided by the number of parameters
[15].
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Ω[y(x;α)] =
1
s

s∑
i=1

α2
i , (4.7)

where s is the number of parameters. Adding this term to the objective function will cause the
neural network to have smaller weights and biases, and this will force its response to be smoother
and less likely to overfit.

The problem with regularization is that it is difficult to determine the optimum value for the
term weight ν. If we make this parameter too small, we may get overfitting. If the regularization
term weight is too large, the neural network will not adequately fit the data [27]. In this way,
it is desirable to determine the optimal regularization parameters in an automated fashion. One
approach is the Bayesian framework of David MacKay [71].

The Flood library includes the class RegularizedMeanSquaredError, which is a C++ imple-
mentation of the mean squared error with parameter decay [61].

4.1.7 Linear regression analysis

The performance of a neural network can be measured to some extent by the sum squared error
on a validation data set, but it is useful to investigate the response in more detail. One option is
to perform a regression analysis between the network response and the corresponding targets for
an independent test set.

This analysis leads to 3 parameters. The first two, m and b, correspond to the slope and the
y-intercept of the best linear regression relating targets to neural network outputs. If we had a
perfect fit (outputs exactly equal to targets), the slope would be 1, and the y-intercept would be
0. The third parameter is the correlation coefficient (R-value) between the outputs and targets. If
this number is equal to 1, then there is perfect correlation between targets and outputs.

The class LinearRegressionAnalysis is included in the Flood library in order to perform this
validation analysis [61].

4.2 The residuary resistance of sailing yachts problem

In this Section an empirical model for the residuary resistance of sailing yachts as a function of
hull geometry coefficients and the Froude number is constructed by means of a neural network.
Both the data and the source code for this problem can be found within the Flood library [61].
The results from this Section were published in [80].

4.2.1 Introduction

Prediction of residuary resistance of sailing yachts at the initial design stage is of a great value
for evaluating the ship’s performance and for estimating the required propulsive power. Essential
inputs include the basic hull dimensions and the boat velocity.

The Delft series are a semi-empirical model developed for that purpose from an extensive collec-
tion of full-scale experiments. They are expressed as a set of polynomials, and provide a prediction
of the residuary resistance per unit weight of displacement, with hull geometry coefficients as vari-
ables and for discrete values of the Froude number [37]. The Delft series are widely used in the
sailing yacht industry.

In this work we present a neural networks approach to residuary resistance of sailing yachts
prediction. Here a multilayer perceptron has been trained with the Delf data set to provide an
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estimation of the residuary resistance per unit weight of displacement as a function of hull geometry
coefficients and the Froude number.

4.2.2 Experimental data

The Delft data set comprises 308 full-scale experiments, which were performed at the Delft Ship
Hydromechanics Laboratory [37]. These experiments include 22 different hull forms, derived from
a parent form closely related to the ‘Standfast 43’ designed by Frans Maas. Variations concern lon-
gitudinal position of the center of buoyancy (LCB), prismatic coefficient (Cp), length-displacement
ratio (LWL/∇1/3

c ) beam-draught ratio (BWL/TC), and length-beam ratio (LWL/BWL). For every
hull form 14 different values for the Froude number (FN ) ranging from 0.125 to 0.450 are con-
sidered. As it has been said, the measured variable is the residuary resistance per unit weight of
displacement (1000 ·RR/4c).

Table 4.1 lists some basic statistics of these experiments. They include mean (ρ), standard
deviation (σ), minimum value (min) and maximum value (max).

LCB Cp LWL/∇1/3
c BWL/TC LWL/BWL FN (1000 ·RR/4c)

ρ -2.38636 0.562955 4.78955 3.92455 3.20818 0.2875 10.4956
σ 1.51312 0.0220637 0.25147 0.54449 0.245434 0.100942 15.2083

min -5 0.53 4.34 2.81 2.76 0.125 0.01
max 0 0.6 5.14 5.35 3.64 0.45 62.42

Table 4.1: Basic data set statistics in the yacht resistance problem.

4.2.3 The Delft series

The Delft series are a method for predicting the residuary resistance per unit weight of displacement
of the canoe body in a sailing yacht. This model was developed from the Delf data set [37].

The Delft series are expressed as a set of 14 polynomials of the form

(
1000 ·RR

4c

)
i

= Ai0 + Ai1Cp + Ai2C
2
p + Ai3LCB + Ai4LCB2 + Ai5

BWL

TC
+ Ai6

LWL

∇1/3
c

. (4.8)

for i = 1, . . . , 14, and where the subindex i represents discrete values for the Froude number. The
values of the coefficients Aij can be found in [37].

Although the Delft series seem to track the experimental residuary resistances quite well, a
standard data modeling procedure was not performed here when they were created. Indeed, the
whole Delft data set was used for adjusting the polynomials (4.8), and no validation with an
independent test set was done here. Also, a residuary resistance model allowing continuous values
for the Froude number would be very desirable.

4.2.4 Neural networks approach

Here a multilayer perceptron is trained to learn the relationship between the input and the target
variables in the Delft data set, and to make good predictions for new data.
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Selection of function space

A feed-forward neural network with a sigmoid hidden layer and a linear output layer of perceptrons
is used to span the function space for this problem. It must have 6 inputs (LCB, Cp, LWL/∇1/3

c ,
BWL/TC , LWL/BWL and FN ), and 1 output neuron (1000 ·Rr/4c).

While the numbers of inputs and output neurons are constrained by the problem, the number
of neurons in the hidden layer is a design variable. In this way, and in order to draw the best
network architecture, different sizes for the hidden layer are tested, and that providing the best
generalization properties is adopted. In particular, the performance of three neural networks with
6, 9 and 12 hidden neurons is compared.

For that purpose, the data is divided into training, validation and testing subsets, containing
50%, 25% and 25% of the samples, respectively. More specifically, 154 samples are used here for
training, 77 for validation and 77 for testing.

Table 4.2 shows the training and validation errors for the three multilayer perceptrons con-
sidered here. ET and EV represent the normalized squared errors made by the trained neural
networks on the training and validation data sets, respectively.

Number of hidden neurons 6 9 12
ET 0.000394 0.000223 0.000113
EV 0.002592 0.001349 0.001571

Table 4.2: Training and validation errors in the yacht resistance problem.

As we can see, the training error decreases with the complexity of the neural network, but the
validation error shows a minimum value for the multilayer perceptron with 9 hidden neurons. A
possible explanation is that the lowest model complexity produces under-fitting, and the highest
model complexity produces over-fitting.

In this way, the optimal number of neurons in the hidden layer turns out to be 9. This neural
network can be denoted as a 6 : 9 : 1 multilayer perceptron, and it is depicted in Figure 4.1.

The family of functions spanned by the neural network in Figure 4.1 can be denoted V and it
is of dimension s = 73, the number of parameters.

Let denote

x = (LCB, Cp, LWL/∇1/3
c , BWL/TC , LWL/BWL, FN ) (4.9)

and

y = 1000 ·Rr/4c. (4.10)

The elements of V are thus written

y : R6 → R

x 7→ y(x;α),

where
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Figure 4.1: Network architecture for the yacht resistance problem.

y(x;α) =
9∑

j=0

α
(2)
j tanh

(
6∑

i=0

α
(1)
ji xi

)
. (4.11)

Finally, all the biases and synaptic weights in the neural network are initialized at random.

Formulation of variational problem

The objective functional chosen for this problem is the normalized squared error between the
outputs from the neural network and the target values in the Delft data set. The training data set
is preprocessed with the means and the standard deviations of Table 4.1.

The variational statement of the function regression problem considered here is then to find a
function y∗(x;α∗) ∈ V for which the functional

E[y(x;α)] =

∑Q
q=1 ‖y(x(q);α)− t(q)‖2∑Q

q=1 ‖t(q) − t̄‖2
, (4.12)

defined on V , takes on a minimum value.
Evaluation of the objective function gradient vector is performed with the back-propagation

algorithm for the normalized squared error.
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Solution of reduced function optimization problem

The selected training algorithm for solving the reduced function optimization problem is a quasi-
Newton method with BFGS train direction and Brent optimal train rate. Training is set to stop
when the improvement between two successive epochs is less than 10−12.

The evaluation and gradient norm histories are shown in Figures 4.2 and 4.3, respectively. Note
that these plots have a logarithmic scale for the Y -axis.
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Figure 4.2: Evaluation history for the yacht resistance problem.
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Figure 4.3: Gradient norm history for the yacht resistance problem.

Table 4.3 shows the training results for this application. Here N is the number of epochs, CPU
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the training time in a laptop AMD 3000, ‖α∗‖ the final parameter vector norm, e(α∗) the final
normalized squared error and ‖∇e(α∗)‖ the final gradient norm.

N = 1210
CPU = 348s
‖α∗‖ = 720
e(α∗) = 0.000223

‖∇e(α∗)‖ = 1.648 · 10−6

Table 4.3: Training results for the yacht resistance problem.

Once the neural network is trained, the inputs must pre-processed with the means and the
standard deviations of the input data. Similarly, the outputs are be post-processed with the mean
and the standard deviation of the target data.

The explicit expression for the residuary resistance model obtained by the neural network is

x1 =
x1 + 2.38182

1.51322
,

x2 =
x2 − 0.564136

0.02329
,

x3 =
x3 − 4.78864

0.253057
,

x4 =
x4 − 3.93682

0.548193
,

x5 =
x5 − 3.20682

0.247998
,

x6 =
x6 − 0.2875
0.100942

,

y = 155.425
+ 63.2639 tanh(−3.2222 + 0.0613793x1 + 0.112065x2 + 0.292097x3

− 0.172921x4 − 0.277616x5 + 0.569819x6)
+ 91.0489 tanh(−147.226− 75.3342x1 + 24.7384x2 + 15.5625x3

− 82.6019x4 − 88.8575x5 + 1.03963x6)
+ 0.00875896 tanh(−77.0309− 156.769x1 − 244.11x2 + 62.4042x3

+ 70.2066x4 + 12.1324x5 − 76.0004x6)
+ 1.59825 tanh(−2.94236− 0.0526764x1 − 0.21039x2 − 0.266784x3

+ 0.131973x4 + 0.317116x5 + 1.9489x6)
− 0.0124328 tanh(−207.601− 210.038x1 + 99.7606x2 + 106.485x3

+ 252.003x4 − 100.549x5 − 51.3547x6)
+ 0.026265 tanh(−17.9071− 11.821x1 + 5.72526x2 − 52.2228x3

+ 12.1563x4 + 56.2703x5 + 56.7649x6)
+ 0.00923066 tanh(69.9392− 133.216x1 + 70.5299x2 − 21.4377x3

+ 47.7976x4 + 15.1226x5 + 100.747x6)
− 0.215311 tanh(4.54348− 1.11096x1 + 0.862708x2 + 1.61517x3
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− 1.11889x4 − 0.43838x5 − 2.36164x6)
+ 0.010475 tanh(23.4595− 223.96x1 − 43.2384x2 + 13.8833x3

+ 75.4947x4 − 7.87399x5 − 200.844x6),
y∗(x;α∗) = 10.4954 + 15.1605y∗(x;α∗).

Validation of results

A possible validation technique for the neural network model is to perform a linear regression
analysis between the predicted and their corresponding experimental residuary resistance values,
using and independent testing set. This analysis leads to a line y = a + bx with a correlation
coefficient R2. In this way, a perfect prediction would give a = 0, b = 1 and R2 = 1.

Table 4.4 shows the three parameters given by this validation analysis.

a = 0.110
b = 0.975

R2 = 0.958

Table 4.4: Linear regression analysis parameters for the yacht resistance problem.

Figure 4.4 illustrates a graphical output provided by this validation analysis. The predicted
residuary resistances are plotted versus the experimental ones as open circles. The solid line
indicates the best linear fit. The dashed line with R2 = 1 would indicate perfect fit.
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Figure 4.4: Linear regression analysis plot for the yacht resistance problem.

From Table 4.4 and Figure 4.4 we can see that the neural network is predicting very well the
entire range of residuary resistance data. Indeed, the a, b and R2 values are very close to 0, 1 and
1, respectively.
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4.2.5 Conclusions

A neural network model has been developed for estimating the residuary resistance of sailing yachts,
and it was found that the quality of the prediction on a testing data set is very satisfactory over
the entire range of data. Moreover, the approach presented here allows continuous values for the
Froude number, while the Delf series do not.

4.3 The airfoil self-noise problem

A neural network model for airfoil self-noise prediction has been created using a noise spectrum
database collected from a family of NACA 0012 airfoils. This application is included within the
Flood library [61] and it has been published as [57].

4.3.1 Introduction

The noise generated by an aircraft is an efficiency and environmental matter for the aerospace
industry. NASA have issued a mandate to reduce the external noise generated by the whole
airframe of an aircraft by 10 decibels (dB) in the near term future [60].

An important component of the total airframe noise is the airfoil self-noise, which is due to
the interaction between an airfoil blade and the turbulence produce in its own boundary layer and
near wake.

There have been many attempts to predict the noise of an airfoil. Howe [50] reviewed the
various methodologies and grouped the different approaches into three groups: (i) theories based
upon the Lighthill acoustic analogy [59], (ii) theories based on the solution of special problems
approximated by the linearized hydrodynamics equations [2], and (iii) semi-empirical models [16].

The model of Brooks, Pope and Marcolini [16], referred here as the BPM model, is a semi-
empirical approach. It is formulated from an extensive set of acoustic wind tunnel tests performed
by NASA, upon different chord length NACA 0012 airfoil sections. The BPM model is used to
predict the self-generated noise of an airfoil blade encountering smooth flow as a function of the
angle of attack, the free-stream velocity and the geometric parameters of the airfoil. Formulated
in 1989, the BPM model is still utilized nowadays.

However, it can be shown that the BPM model does not predict accurately the SPL variable.
For example, it substantially underestimates the airfoil self-noise at low values. In this regard, a
new, more accurate, model to predict the SPL generated by an airfoil is necessary.

Technologies based on neural networks are currently being developed which may assist in ad-
dressing a wide range of problems in aeronautics. They have already been successfully applied to a
range of aeronautical problems in fault diagnostics, modeling and simulation and control systems
[32].

In this work a neural networks approach to airfoil self-noise prediction is presented. After
reviewing the prediction quality of all the configurations tested, it is shown that the neural network
model provides good results for an independent testing data set across the entire range of sound
pressure level data.

4.3.2 Experimental data

The self-noise data set used in this work was processed by NASA in 1989 [16], and so it is referred
here to as the NASA data set. It was obtained from a series of aerodynamic and acoustic tests of
two and three-dimensional airfoil blade sections conducted in an anechoic wind tunnel. A complete
description of these experiments is reported in [16].
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The NASA data set comprises different size NACA 0012 airfoils at various wind tunnel speeds
and angles of attack. The span of the airfoil and the observer position were the same in all of the
experiments.

The aim of the acoustic measurements was to determine spectra for self-noise from airfoils en-
countering smooth airflow. These spectra are affected by the presence of extraneous contributions,
and some processing of the data was needed. The results were presented as 1/3-octave spectra.

In that way, the NASA data set contains 1503 entries and consists of the following variables:

1. Frequency, f [Hz].

2. Angle of attack, α [◦].

3. Chord length, c [m].

4. Free-stream velocity, U [ms−1].

5. Suction side displacement thickness, s [m].

6. Scaled sound pressure level, SPL1/3 [dB].

Here the suction side displacement thickness was determined using an expression derived from
boundary layer experimental data from [16].

Table 4.5 depicts some basic statistics of the NASA data set. Here ρ is the mean, σ the standard
deviation, min the minimum and max the maximum.

Variable f [Hz] α [◦] c [m] U [ms−1] s [m] SPL1/3 [dB]
ρ 2886.38 6.7823 0.136548 50.8607 0.0111399 124.836
σ 3152.57 5.91813 0.0935407 15.5728 0.0131502 6.89866

min 200 0 0.0254 31.7 0.000400682 103.38
max 20000 22.2 0.3048 71.3 0.0584113 140.987

Table 4.5: Basic input-target data set statistics in the airfoil noise problem.

4.3.3 The Brooks-Pope-Marcolini (BPM) model

The BPM model is a semi-empirical approach based on previous theoretical studies and calibrated
using the NASA data set [16].

The airfoil self-noise is the total noise produced when an airfoil encounters smooth non-turbulent
inflow. In this way Brooks et al. identified and modeled five self-noise mechanisms due to spe-
cific boundary-layer phenomena [16]: (i) boundary-layer turbulence passing the training edge, (ii)
separated-boundary-layer and stalled-airfoil flow, (iii) vortex shedding due to laminar-boundary-
layer instabilities, (iv) vortex shedding from blunt trailing edges, and (v) turbulent vortex flow
existing near the tips of lifting blades. This five noise generation mechanisms are illustrated in
Figure 4.5.

The total sound pressure level is determined by summing up the contributions from each of
the different phenomena enumerated above. The particular noise mechanisms which contribute to
the total sound pressure level are dependent on the flow conditions upon the airfoil. In the Brooks
model there are two distinct boundary layer conditions: tripped and untrippred (or natural).
Depending on which is present the total self-noise expression has a different form.
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For the tripped boundary layer condition the laminar boundary layer noise mechanism cannot
occur, as tripping the boundary layer causes it to become turbulent. Therefore its contribution
to the total sound pressure level is ignored, and only the trailing edge noise is evaluated. In the
BPM model the trailing edge noise consists of noise generated by separation (SPLα), and pressure
and suction side effects (SPLP and SPLS). The total self-noise for the tripped boundary layer
condition is as follows,

SPLTotal = 10 log (10SPLP /10 + 10SPLS/10 + 10SPLα/10). (4.13)

Conversely, if the boundary layer is untripped, then the laminar boundary layer vortex shedding
noise mechanism must also be considered. This contribution is termed SPLLBL−V S . The total
sound pressure level for the untripped boundary layer condition is then given by the following
equation,

SPLTotal = 10 log (10SPLP /10 + 10SPLS/10 + 10SPLα/10 + 10SPLLBL−V S/10). (4.14)

In this case study we will only deal with the tripped boundary layer condition.

4.3.4 Neural networks approach

In this Section, a noise prediction model for a turbulent boundary layer noise mechanism has been
created using a multilayer perceptron trained to learn the underlying aspects of the NASA data
set.

Selection of function space

Here a multilayer perceptron with a sigmoid hidden layer and a linear output layer is used to
predict airfoil self-noise (SPL1/3) as a function of frequency (f), angle of attack (α), chord length
(c), suction side displacement thickness (s) and free-stream speed (U). Therefore, this neural
network must have 5 inputs, f , α, c, s and U , and 1 output neuron, SPL1/3.

The number of neurons in the hidden layer will define the degree of complexity of the airfoil
self-noise model, and it needs to be chosen carefully. Indeed, two frequent problems which can
appear when solving a data modeling problem are called under-fitting and over-fitting. The best
generalization is achieved by using a model whose complexity is the most appropriate to produce an
adequate fit of the data [27]. In this way under-fitting is defined as the effect of a generalization error
increasing due to a too simple model, whereas over-fitting is defined as the effect of a generalization
error increasing due to a too complex model.

In this way, and in order to draw a correct network architecture for this problem, the NASA
data set was first split into three, training, validation and testing, subsets. They represent 50%,
25% and 25% of the full data set, respectively. Therefore the training data set contains 752 samples,
the validation data set contains 376 samples and the testing data set contains 375 samples.

Three different neural networks with 6, 9 and 12 neurons in the hidden layer are then trained
with the normalized squared error objective functional and the quasi-Newton method training
algorithm. The generalization performance of each single neural network was then assessed by
measuring the error between the outputs from the trained neural networks and the target values
in the validation data set. This error can indicate if the current model is under or over-fitting
the data. Table 4.6 shows the training and the validation errors for the three different network
architectures considered. The training error decreases with the complexity of the neural network,
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but the validation error shows a minimum value for the multilayer perceptron with 9 hidden
neurons. Indeed, the lowest model complexity seems to produce under-fitting, while the highest
model complexity seems to produce over-fitting.

Number of hidden neurons 6 9 12
Training error 0.122405 0.082553 0.060767

Validation error 0.131768 0.116831 0.129884

Table 4.6: Training and validation errors in the airfoil noise problem.

From these results follows that the optimal network architecture for this problem is that in-
cluding 9 hidden neurons. This neural network can be denoted as a 5 : 9 : 1 multilayer perceptron,
and it is depicted in Figure 4.6.

This multilayer perceptron spans a function space V of dimension s = 64. If we denote x =
(f, α, c, U, s) and y = SPL1/3 the functions belonging to that family are of the form

y : R5 → R

x 7→ y(x;α),

where

y(x;α) =
9∑

j=0

α
(2)
kj tanh

(
5∑

i=0

α
(1)
ji xi

)
. (4.15)

Here the parameter vector α is randomly initialized.

Formulation of variational problem

First, the training data set is preprocessed with the means and standard deviations of the NASA
data set in Table 4.5.

A statistical analysis of the NASA data set did not show a significant presence of outliers. On
the other hand, the optimal network architecture for the validation data has been selected, which
means that the multilayer perceptron will not over-fit the data. In this way the simple normalized
squared error is used instead the more complex Minkowski error or Bayesian regularization.

Therefore, the variational statement of this problem is to find a function y∗(x;α∗) ∈ V for
which the functional

E[y(x;α)] =

∑Q
q=1 ‖y(x(q);α)− t(q)‖2∑Q

q=1 ‖t(q) − t̄‖2
, (4.16)

defined on V , takes on a minimum value.
The objective function gradient ∇e(α) is computed with a back-propagation algorithm for the

normalized squared error.
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Solution of reduced function optimization problem

The training algorithm used to optimize the associated objective function is a quasi-Newton method
with BFGS train direction and Brent train rate.

The training process is set to stop when improvement between two successive epochs is less
than 10−12. Figures 4.7 and 4.7 show the history of this process for the evaluation and the gradient
norm, respectively. Note that these plots have a logarithmic scale for the Y -axis. The evaluation
history shows a significant reduction of this variable during the first few epochs and a posterior
stabilization. On the other hand, during the training process the gradient norm decreases in several
orders of magnitude. These two signs demonstrate that the training algorithm has certainly reached
a minimum.

Some final results from training are listed in Table 4.7. Here N is the number of epochs,
CPU the computing time in a laptop AMD 3000, ‖α∗‖ the final parameters norm, e(α∗) the final
normalized squared error and ‖∇e(α∗)‖ its gradient norm.

N = 2031
CPU = 2218s
‖α∗‖ = 11257.4
e(α∗) = 0.082553

‖∇e(α∗)‖ = 0.011912

Table 4.7: Training results for the airfoil self-noise problem.

The explicit expression of the neural network model for airfoil self-noise prediction is

x1 =
x1 − 2886.38

3152.57
,

x2 =
x2 − 6.7823

5.91813
,

x3 =
x3 − 0.136548

0.0935407
,

x4 =
x4 − 50.8607

15.5728
,

x5 =
x5 − 0.0111399

0.0131502
,

y∗(x, α∗) = −3.26798
− 1.97066 tanh(2.28999 + 0.0677432x1 + 0.198962x2 − 0.224465x3 + 0.0961816x4 + 2.7212x5)
+ 4.69623 tanh(3.42765 + 2.34839x1 + 0.635714x2 + 0.0415776x3 − 0.0832574x4 + 2.30865x5)
+ 0.199113 tanh(−4010.32− 3442.27x1 − 2549.77x2 + 252.083x3 − 281.831x4 + 2783.93x5)
+ 1921.5 tanh(0.444241 + 0.148645x1 − 0.0397378x2 − 0.371608x3 + 0.102558x4 + 0.0102109x5)
− 0.433932 tanh(0.618045 + 1.44893x1 + 3.03601x2 + 2.75553x3 − 0.669881x4 − 1.16721x5)
− 0.313583 tanh(3824 + 3180.03x1 + 2505.72x2 + 6753.55x3 − 303.828x4 − 561.2x5)
+ 1.71381 tanh(6.81775 + 8.18818x1 − 0.222292x2 + 0.430508x3 − 0.152801x4 + 0.801288x5)
− 3.91 tanh(2.20453 + 2.68659x1 + 0.96715x2 + 0.0871504x3 − 0.102282x4 + 0.00203128x5)
− 1917.76 tanh(0.443727 + 0.149241x1 − 0.0404185x2 − 0.372191x3 + 0.102622x4 + 0.0107115x5),

y∗(x, α∗) = 124.836 + 6.89866y∗(x, α∗).
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Validation of results

The accuracy of the neural network model over the experimental configurations in the testing data
set is measured by performing a linear regression analysis between the outputs from the neural
network and the corresponding targets.

The values of the linear regression parameters here are listed in Table 4.8. Here a is the
x-intercept, b is the slope and R2 is the correlation coefficient.

a = 12.5411
b = 0.900159

R2 = 0.894

Table 4.8: Linear regression analysis parameters for the airfoil self noise problem.

Figure 4.9 is a plot of this validation analysis. The broken line represents the optimal model,
in which the prediction would perfectly match the experimental data. From this figure we can see
that the neural network model provides a good fit across all of the equipment configurations.

4.3.5 Conclusions

An overall prediction method based on neural networks has been developed. The approach is based
on data from a series of aerodynamic and acoustic tests of isolated airfoil sections.

The results of the neural network model were checked against an independent testing data set,
and it was found that the quality of the prediction was satisfactory over the entire range of sound
pressure level data.
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Figure 4.5: Airfoil self-noise mechanisms.
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Figure 4.6: Optimal network architecture for the airfoil self-noise problem.
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Figure 4.7: Evaluation history for the airfoil self-noise problem problem.
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Figure 4.8: Gradient norm history for the airfoil self-noise problem.
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Figure 4.9: Linear regression analysis in the airfoil noise problem.



Chapter 5

Classical problems in the calculus
of variations

A variational formulation for the multilayer perceptron provides a direct method for variational
problems. Within this formulation, the solution approach consists of three steps, selection of
function space, formulation of variational problem and solution of reduced function optimization
problem.

For the purpose of validating this numerical method, neural computing is used in this Chapter
to solve some classical problems in the calculus of variations. The neural network answers are
compared to the analytical ones, with encouraging results. It is very important to understand that
no input-target data is used in any of these examples. Instead, the neural networks learn here from
mathematical models.

5.1 The geodesic problem

The geodesic problem for the multilayer perceptron is a variational problem with one input and
one output variables, two boundary conditions and where evaluation of the objective functional is
obtained by integrating a function. All the source code used to solve this problem is included in
the C++ library Flood [61].

5.1.1 Problem statement

The geodesic problem on the plane can be stated as:

Given two points A = (xa, ya) and B = (xb, yb) in a plane, find the shortest path between A
and B.

Figure 5.1 depicts graphically the formulation for this case study.
The arc length between point A and point B of a curve y(x) is given by the functional

L[y(x)] =
∫ B

A

ds

85
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Figure 5.1: The geodesic problem statement.

=
∫ xb

xa

√
dx2 + dy2

=
∫ xb

xa

√
1 + [y′(x)]2dx. (5.1)

The analytical solution to the geodesic problem in the plane is obviously a straight line. For
the particular case when A = (1, 0) and B = (0, 1), the Euler-Lagrange equation provides the
following function as the minimal value for the functional in Equation (5.1)

y∗(x) = 1− x, (5.2)

which gives L[y∗(x)] = 1.414214.

5.1.2 Selection of function space

The neural network chosen to span a function space for the geodesic problem is a multilayer
perceptron with one input, x, a sigmoid hidden layer of size three and one linear output neuron,
y. Such a computational device is drawn in Figure 5.2.

The function space spanned by this neural network is denoted V and it is of dimension s = 10,
the number of parameters. Elements of V are written

y : R → R

x 7→ y(x;α),

with

y(x;α) = b
(2)
1 +

3∑
j=1

w
(2)
1j tanh

(
b
(1)
j + w

(1)
j1 x

)
. (5.3)
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x y

Figure 5.2: Network architecture for the geodesic problem.

The geodesic problem stated in this Section is required to hold y(0) = 1 and y(1) = 0, the
boundary conditions. Therefore this multilayer perceptron must be extended with a particular
and an independent solution terms. A suitable set here is

ϕ0(x) = (1− x), (5.4)
ϕ1(x) = x(x− 1), (5.5)

respectively. They give

y(x;α) = (1− x) + x(x− 1)y(x;α). (5.6)

Note that all the functions in Equation (5.6) indeed satisfy y(0) = 1 and y(1) = 0.
On the other hand, all the biases and synaptic weights in the neural network are initialized

here at random. The resulting initial guess is depicted in Figure 5.3.
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Figure 5.3: Initial guess for the geodesic problem.
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5.1.3 Formulation of variational problem

From Equation (5.1), the variational statement of the geodesic problem for the multilayer percep-
tron is to find a function y∗(x;α∗) ∈ V for which the functional

L[y(x;α)] =
∫ xb

xa

√
1 + [y′(x;α)]2dx, (5.7)

defined on V , takes on a minimum value.
The derivative of the output with respect to the input, y′(x;α), is computed with the back-

propagation algorithm for the Jacobian matrix.
On the other hand, calculating the arc-length of some function y(x;α) ∈ V requires to integrate

a function. Here we use an ordinary differential equation approach for that purpose. In this way,
the value of the integral in Equation (5.7) is equivalent to obtain the value y(b) which is the solution
to

dy

dx
=
√

1 + [y′(x)]2, (5.8)

y(a) = ya. (5.9)

This Cauchy problem can be solved with an adaptive stepsize algorithm. Here we use the
Runge-Kutta-Fehlberg method with a tolerance of 10−15.

Finally, a back-propagation algorithm for the objective function gradient, ∇f(α), is not possible
to be derived here, since the target outputs from the neural network are not known. Instead, the
central differences method for numerical differentiation is to be used, with ε = 10−6.

5.1.4 Solution of reduced function optimization problem

A quasi-Newton method is the training algorithm used to solve the reduced function optimization
problem in this application. The particular train direction chosen is that by the BFGS method
and the train rate is computed with the Brent’s method.

The training algorithm is set to stop when it is not able to reduce the evaluation value of the
objective function anymore. The arc-length of the randomly initialized neural network is 1.44235.
The quasi-Newton method requires 73 epochs to converge. The final value of the arc-length is
1.41421. On the other side the gradient norm decreases from 0.0588223 to 7.61254 · 10−7. Figure
5.4 shows the evaluation value of the neural network as a function of the training epoch, while
Figure 5.5 depicts the gradient norm training history with a logarithmic scale for the y-axis. There
is a significant decrease in both the evaluation value and the gradient norm.

Some numbers resulted from this training process are listed in Table 5.1. These include the
number of epochs N , the number of calls to the objective function M , the CPU time in a laptop
AMD 3000 CPU , the final parameter vector norm ‖α∗‖, the final objective value l(α∗) and the
final gradient norm ‖∇l(α∗)‖. The final arc-length here yields a percentage error of the neural
network results with respect to the analytical solution of about −2.519 · 10−4%.

It is also possible to write an explicit expression of the function addressed by the multilayer
perceptron. This is given by

y∗(x;α∗) = (1− x) + x(x− 1)[0.589469
− 1.20624 tanh (0.29317 + 0.00800689x)
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Figure 5.4: Evaluation history for the geodesic problem.
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Figure 5.5: Gradient norm history for the geodesic problem.

− 0.955752 tanh (2.27028− 0.175609x)
− 0.691202 tanh (−3.59022− 0.405461x)], (5.10)

for x ∈ [0, 1].

To conclude, the final shape of the neural network is shown in Figure 5.6. As we can see, this
is very much a straight line joining the two points A and B, which is the analytical solution for
the geodesic problem.
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N = 73
M = 4260

CPU = 62s
‖α∗‖ = 1.46693
l(α∗) = 1.41421

‖∇l(α∗)‖ = 7.61254 · 10−7

Table 5.1: Training results for the geodesic problem.
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Figure 5.6: Neural network results for the geodesic problem.

5.2 The brachistochrone problem

The brachistochrone problem for the multilayer perceptron can be stated as a variational problem
with one input and one output variables, two boundary conditions and an objective functional
defined by an improper integral. A C++ software implementation of this problem can also be
found within Flood [61]. Similar results to those included here are published in [66].

5.2.1 Problem statement

The original statement of the brachistochrone problem is:

Given two points A = (xa, ya) and B = (xb, yb) in a vertical plane, what is the curve traced out
by a particle acted on only by gravity, which starts at A and reaches B in the shortest time?

In this example we employ a cartesian representation, i.e., the brachistochrone is chosen to be
of the form y = y(x). Nevertheless, other representations would be possible, such as a parametric
representation, in which the brachistochrone would take the form (x, y) = (x(t), y(t)), see Figure
5.2.1.

The time for a particle to travel from point A to point B within a curve y(x) is given by the
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Figure 5.7: The brachistochrone problem statement.

functional

T [y(x)] =
∫ B

A

ds

v
, (5.11)

where s is the arc length and v is the speed. The arc length element here can be written

ds =
√

dx2 + dy2

=
√

1 + [y′(x)]2dx, (5.12)

On the other hand, and in order to obtain an expression for the speed, consider the law of
conservation of energy,

mgya = mgy(x) +
1
2
mv2, (5.13)

where g = 9.81 is the gravitational acceleration. This gives

v =
√

2g(ya − y(x)). (5.14)

Plugging (5.12) and (5.14) into (5.11) produces the final expression for the descent time

T [y(x)] =
1√
2g

∫ xb

xa

√
1 + [y′(x)]2

ya − y(x)
dx. (5.15)

The analytical solution to the brachistochrone problem is a segment of cycloid [99]. Taking
A = (0, 1) and B = (1, 0), the optimal function is given in parametric equations by
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x∗(θ) = 0.583(θ − sin θ), (5.16)
y∗(θ) = 1− 0.583(1− cos θ), (5.17)

for θ ∈ [0, 2.412]. Equations (5.16) and (5.17) yield an optimum descent time T [(x, y)∗(θ)] = 0.577.
The analytical solution to this particular problem can be found in Section 2.2.

5.2.2 Selection of function space

Here a multilayer perceptron with a sigmoid hidden layer and a linear output layer is used to
represent the descent curve y(x). As it is to be described in cartesian coordinates, the neural
network must have one input, x, and one output neuron, y. The size of the hidden layer is a design
variable. However, this is not a very critical issue here, since this problem is well-possed, and we
use three neurons in the hidden layer. Figure 5.8 is a graphical representation of this network
architecture.

x y

Figure 5.8: Network architecture for the brachistochrone problem.

Such a multilayer perceptron spans a family V of parameterized functions y(x;α) of dimension
s = 10, which is the number of parameters in the neural network. Elements of V are of the form

y : R → R

x 7→ y(x;α),

where

y(x;α) = b
(2)
1 +

3∑
j=1

w
(2)
1j tanh

(
b
(1)
j + w

(1)
j1 x

)
. (5.18)

This multilayer perceptron must be extended so as to satisfy the boundary conditions y(0) = 1
and y(1) = 0. In this regard, a set of possible particular and homogeneous solution terms is

ϕ0(x) = (1− x), (5.19)
ϕ1(x) = x(x− 1). (5.20)
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Equations (5.19) and (5.20) give

y(x;α) = (1− x) + x(x− 1)y(x;α), (5.21)

Also, the descent curve y(x) must lie in the interval (−∞, 1), so the network outputs are
bounded in the form

y(x;α) =
{

y(x;α), y(x;α) < 1,
1− ε, y(x;α) ≥ 1,

(5.22)

being ε a small number. As we will see, this is a very delicate choice in this problem. Here we have
use ε = 10−5.

On the other hand, the neural network biases and synaptic weights are initialized at random.
Experience has shown that this direct method does not require a good initial guess for the solution
in this problem, which is a positive result. Figure 5.9 shows the initial neural network response for
this set of parameters chosen at random.
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Figure 5.9: Initial guess for the brachistochrone problem.

5.2.3 Formulation of variational problem

Making use of Equation (5.15), the variational statement of the brachistochrone problem for the
multilayer perceptron is to find a function y∗(x;α∗) ∈ V for which the functional

F [y(x;α)] =
1√
2g

∫ 1

0

√
1 + [y′(x;α)]2

1− y(x;α)
dx, (5.23)

defined on V , takes on a minimum value.
The derivative y′(x;α) can be evaluated analytically with the back-propagation algorithm for

the Jacobian matrix, see Section 3.3.



94 CHAPTER 5. CLASSICAL PROBLEMS IN THE CALCULUS OF VARIATIONS

On the other hand, and to evaluate the objective functional in Equation (5.23), the integration
of a function is needed. Moreover, this objective functional has an integrable singularity at the
lower limit. This singularity makes this problem very difficult to be solved numerically. One
possibility here is to make

∫ xb

xa

f(x)dx ≈
∫ xb

xa+ε

f(x)dx, (5.24)

being ε a small number. Here we use ε = 10−5. The integration is done with an ordinary differential
equation approach and the Runge-Kutta method with 1001 integration points, see Sections B.1
and B.2.

Last, evaluation of the objective function gradient, ∇f(α), is carried out by means of numerical
differentiation. In particular, the central differences method is used with an ε value of 10−6 [15] .

5.2.4 Solution of reduced function optimization problem

A quasi-Newton method with BFGS train direction and Brent optimal train rate methods is the
training algorithm chosen to solve the reduced function optimization problem. The tolerance in
the Brent’s method is set to 10−6.

The objective function in this problem has shown to contain a single, the unique, global min-
imum. In contrast, other representations for the descent curve, such as piece-wise linear or poly-
nomial, could lead to objective functions with many local minima. Indeed, convergence properties
are related to the function space used.

The evaluation of the initial guess is 0.734351. The training algorithm is set to stop when it
can not continue with the training process. This occurs after 237 epochs, when the Brent’s method
gives zero optimal train rate. Of course, a good initial guess would decrease the number of epochs.
After training the evaluation falls to 0.595314. The gradient norm decreases from 0.197046 to
2.61258 · 10−8. Figures 5.10 and 5.11 depict the evaluation value of the objective function and its
gradient norm, versus the training epoch, respectively. Note that a logarithmic scale is used for the
y-axis in the second plot. The evaluation history shows a strong reduction of the objective function
during the first few epochs to become nearly constant until the stopping criterium is satisfied. On
the other hand, the gradient norm decreases in several orders of magnitude during the training
process to reach a very small value. These two situations show that the quasi-Newton method has
certainly converged.

Table 5.2 shows the training results for this problem. Here N is the number of training epochs,
M the number of objective function evaluations, CPU the CPU time in seconds in a laptop AMD
3000, ‖α∗‖ the final parameter vector norm, t(α∗) the final evaluation value and ∇f(α∗) the final
gradient norm. The descent time provided by the neural network yields a percentage error of
around −3.0764% when compared to the analytical solution, being the singularity in the integral
(5.23) the main cause of error. Anyway, results here are good, since the descent time provided by
the network is quite similar to the descent time for the brachistochrone.

The explicit form of the function represented by the trained neural network is

y∗(x;α∗) = (1− x) + x(x− 1)[38.7381
− 59.6973 tanh (2.19639 + 1.57101x)
+ 21.9216 tanh (48.4807 + 120.955x)
+ 0.392256 tanh (0.990452− 14.656x)]. (5.25)
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Figure 5.10: Evaluation history for the brachistochrone problem.
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Figure 5.11: Gradient norm history for the brachistochrone problem.

for x ∈ [0, 1]. Figure 5.12 illustrates the neural network solution. This shape also agrees to that of
the cycloid, which is the analytical solution to the brachistochrone problem.

5.3 The catenary problem

The catenary problem for the multilayer perceptron is a variational problem with one input and
one output variables, two boundary conditions, and an objective functional with one constraint
and requiring the integration of two functions. This problem is implemented in the C++ class
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N = 237
M = 13526

CPU = 1166s
‖α∗‖ = 47.6955
t(α∗) = 0.595314

‖∇t(α∗)‖ = 2.61258 · 10−8

Table 5.2: Training results for the brachistochrone problem.
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Figure 5.12: Neural network results for the brachistochrone problem.

library Flood [61].

5.3.1 Problem statement

The catenary problem is posed as follows:

To find the curve assumed by a loose string of length l hung freely from two fixed points A =
(xa, fa) and B = (xb, fb).

Figure 5.13 graphically declares the catenary problem.
The length of a chain y(x) is given by

L[y(x)] =
∫ xb

xa

√
1 + [y′(x)]2dx. (5.26)

This chain is constrained to have length l, which can be written

EL[y(x)] =
∫ xb

xa

√
1 + [y′(x)]2dx− l
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Figure 5.13: The catenary problem statement.

= 0. (5.27)

On the other hand, the shape to be found is that which minimizes the potential energy. For a
chain y(x) with uniformly distributed mass this is given by

V [y(x)] =
∫ xb

xa

y(x)
√

1 + [y′(x)]2dx. (5.28)

The analytical solution to the catenary problem is an hyperbolic cosine. For the particular case
when l = 1.5, A = (0, 1) and B = (1, 1), it is written

y∗(x) = 0.1891 + 0.3082 cosh
(

x− 0.5
0.3082

)
. (5.29)

The potential energy of this catenary is V [y∗(x)] = 1.0460.

5.3.2 Selection of function space

A multilayer perceptron with one input, three sigmoid neurons in the hidden layer and a linear
output neuron is used to span a function space for the catenary problem. Here the input represents
the independent variable x, while the output represents the dependent variable y, see Figure 5.14.

The family of functions created by this neural network is denoted V and it is of dimension
s = 10. The functions belonging to V are of the type

y : R → R

x 7→ y(x;α),

where
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x y

Figure 5.14: Network architecture for the catenary problem.

y(x;α) = b
(2)
1 +

3∑
j=1

w
(2)
1j tanh

(
b
(1)
j + w

(1)
j1 x

)
. (5.30)

However, this is not a suitable starting point for the catenary problem, since the elements of V
do not hold the boundary conditions y(0;α) = 1 and y(1;α) = 1. For that reason, the multilayer
perceptron of Equation (5.30) must be extended with a particular and an homogeneous solution
terms such as

ϕ0(x) = 1, (5.31)
ϕ1(x) = x(x− 1), (5.32)

to give

y(x;α) = 1 + x(x− 1)y(x;α). (5.33)

Now all the functions of the family defined by Equation (5.33) satisfy y(0;α) = 1 and y(1;α) =
1.

The neural network must be initialized by assigning some values to the parameters. Here we
adopt a random initial guess, see Figure 5.15.

5.3.3 Formulation of variational problem

From Equations (5.27) and (5.28), the constrained problem can be stated as to find a function
y∗(x;α∗) ∈ V such that

EL[y∗(x;α∗)] =
∫ xb

xa

√
1 + [y′(x;α∗)]2dx− l

= 0 (5.34)

and for which the functional

V [y(x;α)] =
∫ xb

xa

y(x;α)
√

1 + [y′(x;α)]2dx, (5.35)
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Figure 5.15: Initial guess for the catenary problem.

defined on V , takes on a minimum value.
The use of a penalty term for the constraint in the length can approximate this problem to

an unconstrained one, which is now formulated as to find a function y∗(x;α∗) ∈ V for which the
functional

F [y(x;α)] = ρL(EL[y(x;α∗)])2 + ρV V [y(x;α∗)], (5.36)

defined on V , takes on a minimum value.
The numbers ρL and ρV can be named length error term weight and potential energy term

weight, respectively. These are design variables, and their values should be chosen so that the
constraint term dominates over the objective term. Here we have set ρL = 100 and ρV = 1.

The value of y′(x;α) in Equations (5.34) and (5.35) is obtained by means of the back-propagation
algorithm for the Jacobian matrix. This is derived in Section 3.3.

On the other hand, evaluation of (5.36) requires the integration of two functions. Here we use
an ordinary differential equation approach to approximate the integrals with the Runge-Kutta-
Fehlberg method, see Sections B.1 and B.2. The tolerance is set to 10−15.

As it is not possible to derive a back-propagation algorithm for the gradient ∇f(α) in this
problem, that item is obtained numerically with central differences and using ε = 10−6

5.3.4 Solution of reduced function optimization problem

A quasi-Newton method with BFGS inverse Hessian approximation and Brent’s line minimization
methods is used here for training. No stopping criterion is chosen. Instead training will finish
when the algorithm can’t keep on doing. At that point the Brent’s method gives zero train rate.
Figures 5.16 and 5.17 depict the training histories for the evaluation and the gradient norm. They
both supply good signs about the this process, since the evaluation and the gradient norm decrease
significantly.

Some results by the quasi-Newton method are listed in Table 5.3. This contains number of
epochs N , number of evaluations M , CPU time in a laptop AMD 3000 CPU , final parameters
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Figure 5.16: Evaluation history for the catenary problem.
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Figure 5.17: Gradient norm history for the catenary problem.

norm ‖α∗‖, final evaluation f(α∗), final length error el(α∗), final potential energy v(α∗) and final
gradient norm ‖∇f(α∗)‖.

The multilayer perceptron for the catenary problem can be written explicitly as

y∗(x;α∗) = 1 + x(x− 1)[0.417922
− 5.13772 tanh (0.390226 + 0.507345x)
+ 2.5535 tanh (−1.24642 + 1.08916x)
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N = 300
M = 17328

CPU = 871s
‖α∗‖ = 3.05481
f(α∗) = 1.04588
el(α∗) = 9.53529 · 10−4

v(α∗) = 1.04579
‖∇f(α∗)‖ = 6.60019 · 10−4

Table 5.3: Training results for the catenary problem.

+ 6.05167 tanh (4.20948 + 1.65389x)], (5.37)

for x ∈ [0, 1].
To conclude, a plot of Equation (5.37) is shown in Figure 5.18. Here we can see a good match

between the neural network results and the analytical catenary.
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Figure 5.18: Neural network results for the catenary problem.

5.4 The isoperimetric problem

The isoperimetric problem for the multilayer perceptron is a variational problem with one input
and two output variables, four boundary conditions and one constraint in the objective functional,
which is evaluated by integrating two functions. All the code in the C++ programming language
needed to solve this problem can be found in Flood [61]. Another variation of the isoperimetric
problem for the multilayer perceptron has been published in [66].
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5.4.1 Problem statement

The isoperimetric problem is another classical problem in the calculus of variations [99]. The
statement of this problem is:

Of all simple closed curves in the plane of a given length l, which encloses the maximum area?.

Figure 5.19 is a graphical statement of the isoperimetric problem. Note that we can not use
here a function y(x) to specify the closed curve, since closed curves will necessarily make the
function multi-valued. Instead, we use the parametric equations (x, y)(t), for t ∈ [0, 1], and such
that x(0) = 0, x(1) = 0, y(0) = 0 and y(1) = 0.
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Figure 5.19: The isoperimetric problem statement.

For a plane curve specified in parametric equations as (x, y)(t), the arc length is given by [99]

L[(x, y)(t)] =
∫ 1

0

√
[x′(t)]2 + [y′(t)]2dt. (5.38)

From Equation (5.38), the constraint on the length can be expressed as an error functional,

EL[(x, y)(t)] =
∫ 1

0

√
[x′(t)]2 + [y′(t)]2dt− l

= 0. (5.39)

On the other hand, Green’s theorem gives the signed area as [99]

A[(x, y)(t)] =
1
2

∫ 1

0

(x(t)y′(t)− x′(t)y(t)) dt. (5.40)
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The analytical solution to the isoperimetric problem is a circle [99]. Taking, for instance, the
perimeter goal to be l = 1, the optimal function is given by

x(t) = − 1
2π

+
1
2π

cos (2πt), (5.41)

y(t) =
1
2π

sin (2πt), (5.42)

for t ∈ [0, 1]. That circle yields a maximum area A[(x, y)∗(t)] = 1/(4π). The analytical solution to
this problem can be found in Section 2.3.

5.4.2 Selection of function space

A neural network consisting of a hidden layer of sigmoid perceptrons and an output layer of linear
perceptrons is used here to represent the closed curve. As this shape is written in parametric
equations as (x, y) = (x, y)(t), the network must have one input, t, and two output neurons, x and
y. The number of neurons in the hidden layer is up to the designer. Anyhow, this is not a very
important choice in this problem, since it can be regarded well-conditioned. Therefore, a neural
network with sufficient complexity will be enough. Here we use three neurons in the hidden layer.
Figure 5.20 depicts this network architecture.

t

y

x

Figure 5.20: Network architecture for the isoperimetric problem.

The neural network in Figure 5.20 spans a function space V of dimension s = 14. The elements
of this family of functions are of the form

(x, y) : R → R2

t 7→ (x, y)(t;α),

where

x(t;α) = b
(2)
1 +

3∑
j=1

w
(2)
1j tanh

(
b
(1)
j + w

(1)
j1 t
)

, (5.43)

y(t;α) = b
(2)
2 +

3∑
j=1

w
(2)
2j tanh

(
b
(1)
j + w

(1)
j1 t
)

. (5.44)
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The function space for this problem is required to satisfy the boundary conditions x(0) = 0,
x(1) = 0, y(0) = 0 and y(1) = 0. A set of homogeneous and particular solution terms here could
be

ϕx0(t) = 0, (5.45)
ϕx1(t) = t(t− 1), (5.46)
ϕy0(t) = 0, (5.47)
ϕy1(t) = t(t− 1). (5.48)

Elements of V thus become

x(t;α) = t(t− 1)x(t;α), (5.49)
y(t;α) = t(t− 1)y(t;α). (5.50)

Please note that although (5.49) is written as two different equations they represent just one
function, where many of the parameters are shared by both output variables. This is a potential
advantage over other direct methods which might use as many different functions as output vari-
ables. Indeed, if the outputs are related in some way, shared parameters lead in a reduction in the
dimension of the function space.

Finally, the neural network is initialized with parameters chosen at random. Figure (5.21)
shows the initial guess for the isoperimetric problem considered here. As the initial solution is a
random shape, it does not necessarily satisfy the constraint on the length.
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Figure 5.21: Initial guess for the isoperimetric problem.

5.4.3 Formulation of variational problem

Considering Equations (5.39) and (5.40) the variational statement of the isoperimetric problem for
the multilayer perceptron is to find a function (x, y)∗(t;α∗) ∈ V , for t ∈ [0, 1], such that
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EL[(x, y)∗(t;α∗)] =
∫ 1

0

√
[x′(t)]2 + [y′(t)]2dt− l

= 0, (5.51)

and for which the functional

A[(x, y)(t;α)] =
1
2

∫ 1

0

(x(t;α)y′(t;α)− x′(t;α)y(t;α)) dt, (5.52)

defined on V , takes on a maximum value.
This constrained problem can be reformulated as an unconstrained problem by adding a penalty

term for the constraint EL to the original objective functional A. The reduced problem is now
stated as to find a function (x, y)∗(t;α∗) ∈ V , for t ∈ [0, 1], and for which the objective functional

F [(x, y)(t;α)] = ρL(EL[(x, y)(t;α)])2 − ρAA[(x, y)(t;α)], (5.53)

defined on V , takes on a minimum value.
Here ρL is the length error term weight and ρA is the area term weight. Both parameters are

design variables in the problem, and should be chosen so that the initial value of the objective
functional is of order unity and so that the values of the penalty term is much smaller than the
value of the objective term. For this problem we have chosen ρL = 100 and ρA = 1.

The quantities x′(t;α) and y′(t;α) are computed with the back-propagation algorithm for the
derivatives of the output variables with respect to the input variables, i.e., the Jacobian matrix.

On the other hand, evaluation of (5.53) requires the integration of two functions, which is
performed here numerically. An ordinary differential equation approach using an adaptive stepsize
algorithm gives the greatest accuracy. In particular we use the Runge-Kutta-Fehlberg method with
a tolerance of 10−15.

Finally, the gradient vector of the objective function, ∇f(α∗), is computed numerically applying
central differences with ε = 10−6.

5.4.4 Solution of reduced function optimization problem

A quasi-Newton method with BFGS train direction and Brent optimal train rate is adopted here
for solving the reduced function optimization problem. This particular objective function has
demonstrated not to contain local minima. Certainly, the function space spanned by the neural
network has good convergence properties. On the contrary, other representations for the closed
curve, such as piece-wise linear or polynomial, could lead to objective functions with many local
minima.

In this example, no more reduction in the objective function will cause to finish the training
process. It might happen that the Brent’s method gives zero train rate for some BFGS train
direction. In such occasions we can restart the training process. On the other hand, constrained
problems need in general more training effort that unconstrained problems. Also, a good initial
guess can decrease very much that computing activity. Figure 5.22 shows a evaluation history which
decreases very rapidly to become almost constant, while Figure 5.23 depicts a gradient norm history
decreasing in several orders of magnitude and with a very small final value. Therefore, we can say
that the quasi-Newton method has found a minimum.



106 CHAPTER 5. CLASSICAL PROBLEMS IN THE CALCULUS OF VARIATIONS

0 1000 2000 3000 4000 5000
−5

0

5

10

15

20

25

epoch

ev
al

ua
tio

n

Figure 5.22: Evaluation history for the isoperimetric problem.
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Figure 5.23: Gradient norm history for the isoperimetric problem.

Table 5.4 shows the training results for this problem. Here N is the number of training epochs,
M the number of evaluations, CPU the training time for a laptop AMD 3000, ‖α∗‖ the final
parameters norm f(α∗) the final objective function value, el(α∗) the final length error, a(α∗) the
final closed curve area and ‖∇f(α∗)‖ the final gradient norm. The perimeter error is less than
10−3 and the error in the closed curve by the neural network is 0.1256%. Results here are also
good, since the perimeter error is very small and the neural network area is very similar to that of
the circle.

The explicit expression of the function addressed by this neural network is written
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N = 4109
M = 138507

CPU = 24044s
‖α∗‖ = 11.0358
f(α∗) = −0.0796397
el(α∗) = 7.96674 · 10−4

a(α∗) = 0.0797032
‖∇f(α∗)‖ = 1.10828 · 10−5

Table 5.4: Training results for the isoperimetric problem.

x∗(t;α∗) = t(t− 1)[10.7483
+ 4.68016 tanh (−4.05158 + 2.43348t)
− 12.4708 tanh (−0.196899 + 0.680774t)
+ 14.4052 tanh (−0.789403 + 0.839184t)], (5.54)

y∗(t;α∗) = t(t− 1)[−23.7525
− 24.3861 tanh (−4.05158 + 2.43348t)
+ 4.62781 tanh (−0.196899 + 0.680774t)
+ 0.374342 tanh (−0.789403 + 0.839184t)], (5.55)

for t ∈ [0, 1] and where all the parameter values have been rounded to the third decimal point.
To end, Figure 5.24 illustrates the neural network solution to the isoperimetric problem. We

can see that the shape provided by the numerical method is that of the circle.
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Figure 5.24: Neural network results for the isoperimetric problem.
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Chapter 6

Optimal control problems

This section gives a brief introduction to optimal control theory, in which the most important
aspects of mathematical formulation are reviewed. The problem of optimal control is intimately
related to the calculus of variations, and therefore it can be formulated as a novel learning task for
the multilayer perceptron.

In order to validate this numerical method, an optimal control problem with analytical solu-
tion is solved by means of a multilayer perceptron. Two practical applications of chemical and
aeronautical engineering interest are also approached with encouraging results.

6.1 Problem formulation

Optimal control -which is playing an increasingly important role in the design of modern systems-
has as its objective the optimization, in some defined sense, of physical processes. More specifically,
the objective of optimal control is to determine the control signals that will cause a process to satisfy
the physical constraints and at the same time minimize or maximize some performance criterion
[53].

The formulation of an optimal control problem requires:

(i) A mathematical model of the system.

(ii) A statement of the physical constraints.

(iii) A specification of the performance criterion.

Mathematical model

The model of a process is a mathematical description that adequately predicts the response of the
physical system to all anticipated inputs.

Let denote y(x) the control variables to the system and u(x) the state variables of the system.
Then the mathematical model (or state equation) can be written as

L(y(x),u(x),x) = f , (6.1)

where L is some algebraic or differential operator and f is some forcing term.

109
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Physical constraints

An optimal control problem might be specified by a set of constraints on the controls and the
states of the system.

Two important types of control constraints are boundary conditions and lower and upper
bounds. If some outputs are specified for given inputs, then the problem is said to include boundary
conditions. On the other hand, if some control variables are restricted to fall in some interval, then
the problem is said to have lower and upper bounds.

State constraints are conditions that the physical system must satisfy. This type of constraints
vary according to the problem at hand.

In this way, a control which satisfies all the control and state constraints is called an admissible
control [53].

Definition 10 (Admissible control). A control y(x) which satisfies all the constraints is called an
admissible control. The set of admissible controls is denoted Y , and the notation y(x) ∈ Y means
that y(x) is admissible.

Similarly, a state which satisfies the state constraints is called an admissible state [53].

Definition 11 (Admissible state). A state u(x) which satisfies the state variable constraints is
called an admissible state. The set of admissible states will be denoted by U, and u(x) ∈ U means
that the state u(x) is admissible.

Performance criterion

In order to evaluate the performance of a system quantitatively, a criterion must be chosen. The
performance criterion is a scalar functional of the control variables of the form

F : Y → R

y(x) 7→ F [y(x)].

In certain cases the problem statement might clearly indicate which performance criterion is to
be selected, whereas in other cases that selection is a subjective matter [53].

An optimal control is defined as one that minimizes or maximizes the performance criterion, and
the corresponding state is called an optimal state. More specifically, the optimal control problem
can be formulated as

Problem 7 (Optimal control problem). Let Y and U be the function spaces of admissible controls
and states, respectively. Find an admissible control y∗(x) ∈ Y which causes the system

L(y(x),u(x),x) = f

to be in an admissible state u∗(x) ∈ U and for which the performance criterion

F [y(x)]

takes on a minimum or maximum value. The function y∗(x) is called an optimal control and the
function u∗(x) an optimal state.

In this way, the problem of optimal control is formulated as a variational problem [53].
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Solution approach

In general, optimal control problems lead to a variational problem that cannot be solved analytically
to obtain the optimal control signal. In order to achieve this goal, two types of numerical methods
are found in the literature, namely, direct and indirect [14]. From them, direct methods are the
most widely used.

As it has been explained in this PhD Thesis, a variational formulation for neural networks pro-
vides a direct method for the solution of variational problems. Therefore optimal control problems
can be approached with this numerical technique. Following the nomenclature introduced in this
section, the optimal control problem for the multilayer perceptron translates as follows:

Problem 8 (Optimal control problem for the multilayer perceptron). Let Y and U be the function
spaces of admissible controls and states, respectively. Let also V be the space consisting of all
controls y(x;α) that a given multilayer perceptron can define, with dimension s. Find an admissible
control y∗(x;α∗) ∈ Y which causes the system

L(y(x;α),u(x),x) = f

to be in an admissible state u∗(x) ∈ U , and for which the performance criterion

F [y(x;α)],

defined on V , takes on a minimum or a maximum value.

6.2 Validation examples

In this section a variational formulation for the multilayer perceptron is applied for validation to
an optimal control problem. The selected example can be solved analytically, which enables a fair
comparison with the neural network results.

6.2.1 The car problem

The car problem for the multilayer perceptron is an optimal control problem with two controls and
two state variables. It is defined by an objective functional with two constraints and requiring the
integration of a system of ordinary differential equations. This problem is included with the Flood
library [61], and it has been published in [63]. Another variant of the car problem not considered
here can also be found in [68].

Problem statement

Consider a car which is to be driven along the x-axis from some position xi at velocity vi to some
desired position xf at desired velocity vf in a minimum time tf , see Figure 6.1.

To simplify the problem, let us approximate the car by a unit point mass that can be accelerated
by using the throttle or decelerated by using the brake. Selecting position and velocity as state
variables the mathematical model of this system becomes a Cauchy problem of two ordinary
differential equations with their corresponding initial conditions,
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Figure 6.1: The car problem statement.

ẋ(t) = v(t), (6.2)
v̇(t) = a(t) + d(t), (6.3)
x(0) = xi, (6.4)
v(0) = vi, (6.5)

for t ∈ [0, tf ] and where the controls a(t) and d(t) are the throttle acceleration and the braking
deceleration, respectively.

The acceleration is bounded by the capability of the engine, and the deceleration is limited by
the braking system parameters. If the maximum acceleration is sup (a) > 0, and the maximum
deceleration is sup (d) > 0, such bounds on the control variables can be written

0 ≤ a(t) ≤ sup (a), (6.6)
− sup (d) ≤ d(t) ≤ 0. (6.7)

As the objective is to make the car reach the final point as quickly as possible, the objective
functional for this problem is given by

F [(a, d)(t)] = tf . (6.8)

On the other hand, the car is to be driven to a desired position xf and a desired velocity vf ,
therefore x(tf ) = xf and v(tf ) = vf . Such constraints on the state variables can be expressed as
error functionals,

Ex[(a, d)(t)] = x(tf )− xf

= 0, (6.9)

Ev[(a, d)(t)] = v(tf )− vf

= 0. (6.10)
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where Ex and Ev are called the final position and velocity errors, respectively.
If we set the initial position, initial velocity, final position, final velocity, maximum acceleration

and maximum deceleration to be xi = 0, vi = 0, xf = 1, vf = 0, sup (a) = 1 and sup (d) = 1,
respectively. This problem has an analytical solution for the optimal control given by [53]

a∗(t) =
{

1, 0 ≤ t < 1,
0, 1 ≤ t ≤ 2, (6.11)

d∗(t) =
{

0, 0 ≤ t < 1,
−1, 1 ≤ t ≤ 2, (6.12)

which provides a minimum final time t∗f = 2.
The statement and the solution itself of this car problem points out a number of significant

issues. First, some variational problems might require a function space with independent parame-
ters associated to it. Indeed, the final time is not part of the control, but it represents the interval
when it is defined. Finally, this kind of applications demand spaces of functions with very good
approximation properties, since they are likely to have very non-linear solutions. Here the optimal
control even exhibits discontinuities.

Selection of function space

Here a multilayer perceptron with a sigmoid hidden layer and a linear output layer is chosen to
represent the control (a, b)(t). The neural network must have one input, t, and two output neurons,
a and d. Although the size of the hidden layer is a design variable, that number is not a critical
issue in optimal control. Indeed, this class of problems are not regarded as being ill-possed, and
a sufficient complexity for the function space selected is generally enough. In this problem we use
three hidden neurons. Figure 6.2 is a graphical representation of this network architecture.

t

d

a

Figure 6.2: Network architecture for the car problem.

Also this neural network needs an associated independent parameter representing the final time
tf .

Such a multilayer perceptron spans a family V of parameterized functions (a, b)(t;α) of di-
mension s = 14 + 1, being 14 the number of biases and synaptic weights and 1 the number of
independent parameters. Elements V are of the form

(a, d) : R → R2

t 7→ (a, d)(t;α, tf ),
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where

a(t;α, tf ) = b
(2)
1 +

3∑
j=1

w
(2)
1j tanh

(
b
(1)
j + w

(1)
j1 t
)

, (6.13)

d(t;α, tf ) = b
(2)
2 +

3∑
j=1

w
(2)
2j tanh

(
b
(1)
j + w

(1)
j1 t
)

. (6.14)

Equation (6.13) represents just one function, in many of the parameters are shared.
The control variable is constrained to lie in the interval [0, 1]. To deal with such constraints we

bound the network outputs in the form

a(t;α, tf ) =

 0, a(t;α, tf ) < 0.
a(t;α, tf ), 0 ≤ a(t;α, tf ) ≤ 1.
1, a(t;α, tf ) > 1.

(6.15)

d(t;α, tf ) =

 −1, d(t;α, tf ) < −1.
d(t;α, tf ), −1 ≤ d(t;α, tf ) ≤ 0.
0, d(t;α, tf ) > 0.

(6.16)

All the parameters in the neural network are initialized at random.

Formulation of variational problem

From Equations (6.9), (6.10) and (6.8), the car problem formulated in this Section can be stated
so as to find a control (a, d)∗(t;α∗, t∗f ) ∈ V such that

Ex[(a, d)∗(t;α∗, t∗f )] = 0, (6.17)
Ev[(a, d)∗(t;α∗, t∗f )] = 0, (6.18)

and for which the functional

T [(a, d)(t;α, tf )],

defined on V , takes on a minimum value.
This constrained problem can be converted to an unconstrained one by the use of penalty terms.

The statement of this unconstrained problem is now to find a control (a, d)∗(t;α∗, t∗f ) for which
the objective functional

F [(a, d)(t;α, tf )] = ρXE2
x + ρV E2

v + ρT T, (6.19)

defined on V , takes on a minimum value.
The values ρX = 10−3, ρV = 10−3 and ρT = 1 are called the final time, error position an error

velocity term weights, respectively.
Please note that evaluation of the objective functional (6.19) requires a numerical method for

integration of ordinary differential equations. Here we choose the Runge-Kutta-Fehlberg method
with tolerance 10−12 [93].

The objective function gradient vector, ∇f(α), must be evaluated with numerical differentia-
tion. In particular, we use the symmetrical central differences method [15] with an epsilon value
of 10−6.
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Solution of reduced function optimization problem

Here we use a quasi-Newton method with BFGS train direction and Brent optimal train rate
methods [83]. The tolerance in the Brent’s method is set to 10−6. While other direct methods
might suffer from local optima with that algorithm in this problem, the neural networks method
proposed here has demonstrated fully convergence to the global optimum.

In this example, training is stopped when the Brent’s method gives zero rate for some gradient
descent direction. The evaluation of the initial guess was 0.827; after 112 epochs of training this
value falls to 1.999 · 10−3.
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Figure 6.3: Evaluation history for the car problem.

Table 6.1 shows the training results for this problem. Here N denotes the number of epochs, M
the number of evaluations, F the final objective functional value, ∇f the final objective function
gradient norm, Ex the final position error, Ev the final velocity error and t∗f the optimum time. As
we can see, the final errors in the position and the velocity of the car are very small, and the final
time provided by the neural network matches the analytical final time provided by the optimal
function in Equation (6.11). More specifically, the errors made in the constraints are around 5·10−3

and the error made in the final time is around 0.2%.
The analytical form of the optimal control addressed by the neural network is as follows

a∗(α∗, t∗f ) = −1.31175
+ 6.85555 tanh (−1.1448 + 1.48771t)
− 0.387495 tanh (2.52653− 1.5223t)
+ 16.1508 tanh (12.2927− 12.3053t), (6.20)

d∗(α∗, t∗f ) = 1.82681
− 4.91867 tanh (−1.1448 + 1.48771t)
− 0.839186 tanh (2.52653− 1.5223t)
+ 6.76623 tanh (12.2927− 12.3053t), (6.21)
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Figure 6.4: Gradient norm history for the car problem.

N = 113
M = 7565

CPU = 324s
‖α∗‖ = 6.84336

f(α∗, t∗f ) = 0.00199951
ex(α∗, t∗f ) = 5.00358 · 10−4

ev(α∗, t∗f ) = 4.99823 · 10−4

‖∇f(α∗, t∗f )‖ = 4.63842 · 10−8

t∗f = 1.99901

Table 6.1: Training results for the car problem.

subject to the lower and upper bounds

a∗(t;α∗, t∗f ) =


0, a∗(t;α∗, t∗f ) < 0.
a∗(t;α∗, t∗f ), 0 ≤ a∗(t;α∗, t∗f ) ≤ 1.
1, a∗(t;α∗, t∗f ) > 1.

(6.22)

d∗(t;α∗, tf ) =


−1, d∗(t;α∗, t∗f ) < −1.
d∗(t;α∗, t∗f ), −1 ≤ d∗(t;α∗, t∗f ) ≤ 0.
0, d∗(t;α∗, t∗f ) > 0.

(6.23)

and for t ∈ [0, 1.99901].

The optimal control (acceleration and deceleration) and the corresponding optimal trajectories
(position and velocity) obtained by the neural network are shown in Figures 6.5, 6.6, 6.7 and 6.8,
respectively.
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Figure 6.5: Neural network solution for the optimal acceleration in the car problem.
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Figure 6.6: Neural network solution for the optimal deceleration in the car problem.

6.3 The fed batch fermenter problem

The fed batch fermenter problem for the multilayer perceptron is an optimal control problem with
one control and four state variables, and defined by an objective functional with one constraint
and requiring the integration of a system of ordinary differential equations. The implementation
of this problem is included in Flood [61].
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Figure 6.7: Corresponding optimal trajectory for the position in the car problem.
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Figure 6.8: Corresponding optimal trajectory for the position in the car problem.

6.3.1 Introduction

In many biochemical processes, the reactors are operated in fed batch mode, where the feed rate
into the reactor is used for control. There is no outflow, so the feed rate must be chosen so that
that batch volume does not exceed the physical volume of the reactor.

As a specific example, an optimization study of the fed batch fermentation for ethanol produc-
tion by Saccharomyces cerevisiae is presented.

In this Section, we seek to determine the optimal control law and the corresponding optimal
trajectory of a fed batch fermenter problem using a neural network. We also compare the results
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by this numerical method against those provided by other authors.

6.3.2 Problem statement

The fed batch fermentation process considered here is a process in which ethanol is produced by
Saccharomyces cerevisiae and the production of ethanol is inhibited by itself.

A batch fermenter generally consists of a closed vessel provided with a means of stirring and
with temperature control. It may be held at constant pressure or it can be entirely enclosed at
a constant volume. In many biochemical processes, the reactors are operated in fed batch mode,
where the feed rate into the reactor chosen so that that batch volume does not exceed the physical
volume of the reactor [4]. Figure 6.3.2 shows the basics of the reactor.

feed

V

Figure 6.9: The fed batch fermenter.

State equations

The states of the plant are the concentration of cell mass x(t), the concentration of substrate
s(t), the concentration of product p(t) and the broth volume in the fermenter v(t). The amount
u(t) is the feeding rate, which is the only manipulated variable of this process [23]. The dynamic
behavior of this fed batch fermentation process can be described by the following differential-
algebraic equations

dx(t)
dt

= x(t)µ(t)− u(t)
x(t)
v(t)

, (6.24)

ds(t)
dt

= −x(t)
µ(t)
Y

+ u(t)
s0 − s(t)

v(t)
, (6.25)

dp(t)
dt

= −x(t)η(t)− u(t)
p(t)
v(t)

, (6.26)

dv(t)
dt

= u(t), (6.27)

µ(t) =
µ0

1 + p(t)
Kp

s(t)
Ks + s(t)

, (6.28)
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η(t) =
ν0

1 + p(t)
K′

p

s(t)
K ′

s + s(t)
, (6.29)

together with their initial conditions

x(ti) = xi, (6.30)
s(ti) = si, (6.31)
p(ti) = pi, (6.32)
v(ti) = vi. (6.33)

Here µ is the specific growth rate, η the specific productivity, Y the yield coefficient and s0 the
substrate concentration of the feed. The kinetic constants for Saccharomyces cerevisiae growing
of glucose are µ0 = 0.408 h−1, Kp = 16.0 g l−1, Ks = 0.22 g l−1, η0 = 1.0 h−1, K ′

p = 71.5 g l−1 and
K ′

s = 0.44 g l−1 [46].

Input constraints

Here the feed rate to the reactor constrained to lie in the interval

u(t) ∈ [inf (u), sup (u)] (6.34)

for t ∈ [ti, tf ].

State constraints

The liquid volume of the reactor is limited by the vessel size, v(t) ≤ V . This constraint on the
state of the system can be written as an error functional,

EV [u(t)] ≡ V − v(tf )
= 0. (6.35)

Performance requirements

The desired objective is to obtain a maximum amount of yield at the end of the process. The
actual yield in the reactor is given by the concentration of product multiplied by the broth volume
in the reactor. More specifically, the aim is to choose a feed rate which maximizes the functional

Y [u(t)] = p(tf )v(tf ), (6.36)

Since the equations describing the fermenter are nonlinear and the inputs and states are con-
strained, the determination of the feed rate to maximize the yield can be quite difficult.

Nominal values

The nominal values for all the parameters here are the same as those used by R. Luus in [70], so
as to compare the neural network results to those reported by that author.

The yield coefficient, Y , is assumed to be a constant of 0.1. The initial state is specified as
x0 = 1g l−1, s0 = 150g l−1, p0 = 0 and v0 = 10 l, and the final time of the process, tf , is set at
54 h. Besides, The feed rate to the reactor constrained by 0 ≤ u(t) ≤ 12.
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6.3.3 Numerical results

Selection of function space

The control variable u(t) is to be represented by a multilayer perceptron with a hidden layer of
sigmoid neurons and an output layer of linear neurons. Necessarily, the number of inputs is one, t,
and the number of output neurons is also one, u. The size of the hidden layer is a design variable
in the problem, which is set here to two. Figure 6.10 is a graphical representation of the resulting
network architecture.

t u

Figure 6.10: Network architecture for the fed batch fermenter problem.

This neural network spans a family V of parameterized functions u(t;α) of dimension s = 7,
which is the number of biases and synaptic weights. Elements of V are of the form

u : R → R

t 7→ u(t;α),

where

u(t;α) = b
(2)
1 +

2∑
j=1

w
(2)
1j tanh

(
b
(1)
j + w

(1)
j1 t
)
. (6.37)

The minimum and maximum input and output values are by far outside the range [−1, 1]. It
is therefore necessary to pre and post-process input and output in order to achieve better approx-
imation properties. The minimum and maximum values used here for pre and post-processing are
listed in Table 6.2.

min (t) = 0
max (t) = 54

min (u(t;α)) = 0
max (u(t;α)) = 12

Table 6.2: Minimum and maximum for pre and post-processing in the fermenter problem.

In this way, the input is pre-processed to produce an input signal with minimum −1 and
maximum 1,
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t = 2
t

54
− 1. (6.38)

Similarly, the output signal from the neural network is then post-processed to produce an
output ranging from −1 and 1,

u(t;α) = 0.4 (u(t;α)12 + 1) . (6.39)

It is easy to see that this form of pre and post-processing produces input and output signals in
the range [−1, 1].

On the other hand, the feed rate to the fermenter u(t) is constrained to lie in the interval [0, 12].
To deal with such constraints we bound the network outputs in the form

u(t;α) =

 0, u(t;α) < 0.
u(t;α), 0 ≤ u(t;α) ≤ 12.
12, u(t;α) > 12.

(6.40)

Formulation of variational problem

Following Equations (6.35) and (6.36), the fed batch fermenter for the multilayer perceptron can
be stated as to find an optimal control u∗(t;α∗) ∈ V so that

EV [u∗(t;α∗)] = 0, (6.41)

and for which the functional

Y [u(t;α)],

defined on V , takes on a minimum value.
This constrained problem can be formulated as an unconstrained one by adding a penalty

term for the constraint to the original objective functional. More specifically, the unconstrained
fed batch fermenter problem is stated as to find an optimal control u∗(t;α∗) ∈ V for which the
functional

F [u(t;α)] = ρE(EV [u(t;α)])2 − ρY Y [u(t;α)], (6.42)

defined on V , takes on a minimum value.
The volume error an yield term weights ρE and ρY , are set here to 10−3 and 10−10, respectively.
Please note that evaluation of the objective functional (6.42) requires a numerical method for

integration of ordinary differential equations. Here we choose the Runge-Kutta-Fehlberg method
[93]. For this problem we set the tolerance to 10−12.

On the other hand, there are no target outputs for the neural network here, so a back-
propagation algorithm for the objective function gradient vector, ∇f(α), can not be derived for
this problem. Instead, we use the central differences method for numerical differentiation with
ε = 10−6.



6.3. THE FED BATCH FERMENTER PROBLEM 123

Solution of reduced function optimization problem

Here we use the quasi-Newton method for training. This method is applicable here, since the
objective function is differentiable.

In this example, the training algorithm stops when it can not keep minimizing the objective
function. When this situation occurs, the Brent’s method gives zero train rate for a gradient
descent train direction.

The training algorithm required 492 epochs to go. The evaluation of the initial guess is
−0.0246886. After training this value falls to −0.0417673. On the other side, the gradient norm
deceases from 0.0394488 to 2.7123 · 10−6. Figures 6.11 and 6.12 explain this process in a graphical
fashion.
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Figure 6.11: Evaluation history in the fed batch fermenter problem.

Table 6.3 shows the training results for this problem. Here N is the number of epochs, M the
number of objective function evaluations, CPU the computing time in a laptop AMD 3000, ‖α∗‖
the final parameters norm, f(α∗) the final objective value, ev(α∗) the final error in the volume
constraint and y(α∗) the final yield. The final volume error is around 0.1% of the total volume,
giving a very slight violation of the constraint. On the other side, the yield obtained by the neural
network is about 0.2% higher than the 20406 l reported by Luus [70].

The optimal feed rate obtained by the neural network can be written in a explicit form as

t =
2
54

t− 1,

u∗(t;α∗) = −27.3844
+ 37.5292 tanh (27.1799− 26.3943t)
+ 11.2443 tanh (−1.83915 + 0.719688t),

u∗(t;α∗) = 0.5(u∗(t;α∗) + 1)12, (6.43)

for t ∈ [0, 54].
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Figure 6.12: Gradient norm history in the fed batch fermenter problem.

N = 493
M = 24776

CPU = 1019
‖α∗‖ = 23.0654
f(α∗) = −4.17673 · 10−2

ev(α∗) = 0.205
y(α∗) = 20447.8

‖∇f(α∗)‖ = 2.7123 · 10−6

Table 6.3: Training results for the fed batch fermenter problem.

The optimal control obtained by the neural network is plotted in Figure 6.13. On the other
hand, the optimal trajectories for the cell mass concentration, substrate concentration, product
concentration and broth volume are depicted in Figures 6.14, 6.15, 6.16 and 6.17, respectively.
All these process histories for the state variables are quite smooth functions. This is a desired
property, since the process is desired to be stable. Finally, the optimal specific growth rate and
productivity are plotted in Figures 6.18 and 6.19.

6.3.4 Conclusions

A variational formulation for neural networks provides a direct method for the solution of general
variational problems. The method has been applied here to the fed batch fermenter optimal control
problem.

One of the main advantages of this technique relies on the universal approximation property of
the multilayer perceptron. Some other remarkable features are the simplicity of problem formula-
tion and the no need for a good initial guess.
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Figure 6.13: Optimal control for the fed batch fermenter.
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Figure 6.14: Optimal trajectory for the concentration of cell mass in fed batch fermenter.

6.4 The aircraft landing problem

This is an optimal control problem of aeronautical engineering interest, with one control and
four state variables, and where the objective functional is evaluated by integrating a system of
four ordinary differential equations. Also, the objective functional is built so as to find good
performance in all the state variables. The source code for this application has been placed in the
Flood library [61].
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Figure 6.15: Optimal trajectory for the concentration of substrate in the fed batch fermenter.
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Figure 6.16: Optimal trajectory for the concentration of product in the fed batch fermenter.

6.4.1 Introduction

The landing of an aircraft consists of two main stages: the glide-path phase and the flare-out phase.
In the first stage the pilot is guided by an air traffic controller to a position where the aircraft

will be within the range of the Instrument Landing System (ILS). At this position the pilot tunes
the navigational receivers to the correct ILS frequency [1]. On board the aircraft a glide slope
receiver utilizes this ILS signal to give the pilot a visual indication if the aircraft is currently above
or below the desired glide path.

At approximately 30 meters above the runway the pilot begins the second and final stage of
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Figure 6.17: Optimal trajectory for the broth volume in the fed batch fermenter problem.
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Figure 6.18: Optimal specific growth rate in the fed batch fermenter problem.

landing, the flare-out procedure. At this point the ILS glide slope becomes unsuitable and the pilot
must guide the aircraft along the desired trajectory by making visual contact with the ground [28].
It is assumed that at the beginning of this flare-out phase the values of the altitude and the altitude
rate lie within a given range of values, and that the aircraft has been guided to the correct position
by air traffic controller. It is also assumed that during the flare-out the aircraft is not affected by
any wind gust or perturbations.

Here we seek to determine the optimal control and the corresponding optimal trajectory of an
aircraft during its final approach before landing. The aircraft landing problem examined here is
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Figure 6.19: Optimal specific productivity in the fed batch fermenter problem.

similar to that considered in [28].

6.4.2 Problem statement

In this work our attention is focussed on the final phase of the landing process, the flare-out. This
problem has been simplified as it is assumed that only the longitudinal motion of the aircraft need
be considered, as the lateral motion is primarily used to set the orientation of the aircraft in the
same direction as the runway, prior to the flare-out phase.

In the flare-out phase the longitudinal dynamics of the aircraft are controlled by the pitch angle.
Changes in the pitch angle of are performed by varying the pitching moment around the center
of mass. In civil aircrafts this is traditionally performed by a rotatable trailing edge flap situated
on the horizontal stabilizer known as the elevator [5]. Thus the longitudinal motion of the aircraft
is controlled by the magnitude of the elevator deflection angle. Figure 6.20 depicts the elevator
deflection angle and the pitch angle of an aircraft.

Figure 6.20: Elevator deflection angle and pitch angle.

Thus the aim of the aircraft landing problem considered here is to determine an optimal elevator
deflection angle as a function of time that satisfies a set of performance requirements.
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State equations

Using the simplified conditions stated above and the assumption that the glide angle, γ, is small
(γ ≈ 0), the equations of motion of the aircraft can be reduced to a set of equations known as the
short period equations of motion [7].

These equations of motion can be written using a set of transfer functions relating the aircraft
variables and the control input to the state variables, as shown in Equation (6.44). The variables of
the aircraft motion used are the pitch angle rate (θ′), the altitude (h) and the altitude acceleration
(h′′). The control variable is the elevator deflection angle (δ).

The properties of the aircraft are defined using a set of parameters defined as the short period
gain (Ks), the short period resonant frequency (ωs), the short period damping factor (η) and the
path time constant (Ts) [28]. The notation ′ is used to denote the time derivative.

θ′(s) =
Ks(Tss + 1)(
s2

ω2
s

+ 2ηs
ωs

+ 1
) δ(s),

h′′(s) =
V

Tss + 1
θ′(s),

h(s) =
1
s2

h′′(s),

h(s) =
KsV

s2
(

s2

ω2
s

+ 2ηs
ωs

+ 1
) δ(s). (6.44)

The variable V is the velocity of the aircraft and it is assumed to be constant during the flare-
out phase at a value of 78 ms−1. The aircraft parameters are also assumed to be time invariant,
and the numerical values used here are Ks = −0.95 s−1, Ts = 2.5 s, ωs = −0.95 rad s−1 and η = 0.5

However, some of the state variables used in Equation (6.44) are not readily available. For
example the term h′′ can be difficult to obtain. For this reason the following variables will be
used instead to describe the dynamics of the aircraft [28]: θ′, the pitch angle rate, θ, the pitch
angle, h′, the altitude rate and h, the altitude. This set of variables can be easily obtained from
gyroscopic or radar altimeter measurements in flight. Equation (6.44) can then be transformed
into the following set of ordinary differential equations in the time domain

dθ′

dt
=

(
1
Ts
− 2ηωs

)
θ′(t)

+
(

2ηωs

Ts
− ω2

s −
1

T 2
s

)
θ(t)

+
(

1
V T 2

s

− 2ηωs

V Ts
+

ω2
s

V

)
h′(t)

+ ω2
sKsTsδ(t),

dθ

dt
= θ′(t),

dh′

dt
=

V

Ts
θ(t)− 1

Ts
h′(t),

dh

dt
= h′(t). (6.45)
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It can be seen here that the elevator deflection angle (δ) has a direct effect on the pitch angle
rate (θ′), which in turn affects the pitch angle (θ), the altitude rate (h′) and the altitude (h).

Performance requirements

The performance requirements define the physical constraints and desired values of the control
and the state variables. The most important requirements and constraints for the landing system
considered in this problem are highlighted in the following section.

In our example problem the flare-out procedure begins at ti = 0s and ends at the final or
touchdown time tf = 20s. The initial conditions of the state variables at ti are displayed in Table
6.4.

h0 30 m
h′0 6 m s−1

θ0 −0.078 rad
θ′0 0 rad s−1

Table 6.4: Initial Conditions for the aircraft landing problem.

During a process it is often desirable to be able to define the desired value of a given state
variable; this information can then be used to evaluate the performance of the system. The desired
altitude of the aircraft is the most visual characteristic of the landing procedure. For this problem
it is given by the following expression

hd(t) =
{

30 exp
(
− t

5

)
, 0 ≤ t ≤ 15,

6− 0.3t, 15 ≤ t ≤ 20. (6.46)

This exponential-linear trajectory ensures a safe and comfortable landing. The desired altitude
is displayed in Figure 6.21.

An important requirement is that the aircraft does not land before the final touchdown time,
tf . At this time the following condition must be satisfied

hd(tf ) = 0. (6.47)

The desired altitude rate, or vertical velocity, of the aircraft is given by the time derivative of
the desired altitude expression,

h′d(t) =
{

6 exp
(
− t

5

)
, 0 ≤ t ≤ 15,

−0.3, 15 ≤ t ≤ 20. (6.48)

At the time of touchdown the pitch angle of the aircraft must lie in the range [0◦, 10◦]. This
requirement is defined by a set of physical limitations. The lower limit serves to ensure the nose
wheel of a tricycle landing gear does not touchdown prematurely. Similarly the upper limit is set to
prevent the tail gear touching downing first. A desired pitch angle at touchdown could be specified
as

θd(tf ) = 2◦. (6.49)

In order to ensure safety and comfortability during the landing phase, it is desirable to restrict
the pitch angle rate from excessive fluctuations. Thus the desired pitch angle rate is
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Figure 6.21: Desired altitude in the aircraft landing problem.

θ′d(t) = 0, 0 ≤ t ≤ tf . (6.50)

As stated earlier, the elevator controls the longitudinal motion of the aircraft. It is assumed
that any control signal is instantaneously represented by the elevator. The elevator deflection angle
is also physically limited to a finite range

− 35◦ ≤ δ(t) ≤ +15◦, 0 ≤ t ≤ tf . (6.51)

It is desirable to land without expending excessive amounts of control effort. Therefore the
desired elevator deflection angle is defined as

δd(t) = 0, 0 ≤ t ≤ tf . (6.52)

6.4.3 Numerical results

In this Section a multilayer perceptron is trained to find the optimal control and the corresponding
optimal trajectory for the aircraft landing problem formulated in Section 6.4. The problem is
solved using the Flood library [61].

Selection of function space

The first step in solving this problem is to choose a network architecture, in order to define a
function space for the control variable. Here a multilayer perceptron with a sigmoid hidden layer
and a linear output layer is used. This neural network is a class of universal approximator [49].
The neural network has one input, the time, and one output neuron representing the elevator
deflection angle. We take an initial guess at the number of neurons in the hidden layer to be three.
This neural network can be denoted as a 1 : 3 : 1 multilayer perceptron. Figure 6.22 is a graphical
representation of this network architecture.
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Figure 6.22: Network architecture for the aircraft landing problem.

Such a multilayer perceptron spans a family V of parameterized functions δ(t;α) of dimension
s = 10, which is the number of parameters in the neural network network. Elements V are of the
form

δ : R → R

t 7→ δ(t;α),

where

δ(t;α) = b
(2)
1 +

3∑
j=1

w
(2)
1j · tanh

(
b
(1)
j + w

(1)
j1 t
)

. (6.53)

The parameters of the neural network are initialized so that the elevator deflection angle δ(t;α)
is 0 for all landing time 0 ≤ t ≤ tf .

The elevator deflection angle is constrained to lie in the range [−35◦,+15◦]. The output of the
neural network is bounded in the following way

δ(t;α) =

 −35◦, δ(t;α) < −35◦.
δ(t;α), −35◦ ≤ δ(t;α) ≤ +15◦.
+15◦, δ(t;α) > +15◦.

(6.54)

Formulation of variational problem

The second step is to select a suitable objective functional in order to formulate the variational
problem. This functional will determine the form of the optimal control function (δ∗(t)) and is
based upon the performance requirements discussed in Section 6.4.2.

From Equations (6.46) (6.47), (6.48), (6.49), (6.50) and (6.52) the objective functional used in
this problem is defined as

F [δ(t;α)] = αh

∫ tf

0

[h(t)− hd(t)]2dt

+ βhhd(tf )
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+ αh′

∫ tf

0

[h′(t)− h′d(t)]
2dt

+ βθθd(tf )

+ αθ′

∫ tf

0

[θ′(t)− θ′d(t)]
2dt

+ αδ

∫ tf

0

[δ(t)− δd(t)]2dt, (6.55)

where αh, αh′, αθ′ and αδ are the altitude, altitude rate, pitch angle rate and elevator deflection
angle weight factors; the terms βh and βθ are the touchdown weight factors for the altitude and
the pitch angle. Table 6.5 displays the set used in this investigation. These numbers are design
variables of the problem and were obtained with some trial and error.

αh 5.0× 101

βh 5.0× 103

αh′ 1.0× 10−4

βθ 2.0× 106

αθ′ 2.0× 106

αδ 1.0× 105

Table 6.5: Weight factors in the aircraft landing problem.

Note that evaluation of the objective functional, Equation (6.55), requires the time history
of all the state variables in response to the time history of the control variable input. This is
determined by integrating the state equations of the system, numerical integration is performed
here using the Runge-Kutta method with 1000 integration points [83]. Note also that this objective
functional also requires a numerical method for integration of functions in order to be evaluated;
in this problem we use the trapezoid method.

Solution of reduced function optimization problem

The third step is to choose a suitable training algorithm, in order to solve the reduced function
optimization problem. Here we use a quasi-Newton method with BFGS train direction and Brent
optimal train rate methods [83]. The tolerance in the Brent’s method is set to 10−6.

The objective function gradient vector ∇f(α) must be evaluated via numerical differentiation.
Here we use the symmetrical central differences method [15] with an epsilon value of 10−6.

The training algorithm is set to stop when the optimal train rate in Brent’s method is 0. For
this case, the quasi-Newton method required 291 epochs or iterations to find the minimum of the
objective functional. The evaluation of the initial guess was 4.76; after training this value falls to
1.002×10−4. Figure 6.23 displays the training history for this problem, showing objective functional
evaluation against the number of training epochs. Note that the Y-axis uses a logarithmic (base
10) scale.

Table 6.6 shows the training results for this problem. Here N denotes the number of epochs, M
the number of objective function evaluations, f(α∗) the final objective function value and ‖∇f(α∗)‖
the final objective function gradient norm. From this table it can be seen that the final gradient
norm approaches a very small value, which indicates that the training algorithm has converged to
a minimum point.
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Figure 6.23: Evaluation history for the aircraft landing problem.

N 291
M 16748

f(α∗) 1.002× 10−4

‖∇f(α∗)‖ 6.09× 10−2

Table 6.6: Training results for the aircraft landing problem.

The optimal control obtained by the neural network is shown in Figure 6.24. The corresponding
optimal trajectories of the altitude, altitude rate, pitch angle and pitch angle rate are shown in
Figures 6.25, 6.26, 6.27 and 6.28 respectively.

Figure 6.24 shows the elevator deflection angle during the landing phase. It can be seen that
the magnitude of control input ranges from -3◦ to 0◦ and has a smooth profile. This therefore
satisfies the requirement of reducing the required work effort.

The optimal trajectory for the altitude, depicted in Figure 6.25, matches the desired altitude
profile detailed in Equation (6.46). It can be seen that at the final touchdown time, tf , the altitude
of the aircraft is 0m.

Figure 6.26 shows that the altitude rate of the aircraft; it can be seen that it follows the profile
specified by Equation (6.48).

The pitch angle variation during the landing phase is displayed in Figure 6.27. The value at
touchdown is approximately 0.5◦/s, this value lies within the desired range [0◦, 10◦]. However
the desired touchdown value of 2◦ has not been obtained. This is believed to be a result of the
simplified state equations used; for example the model does not account for effects such as induced
lift at low altitudes.

Finally Figure 6.28 displays the pitch angle rate. It can be seen that throughout the landing
phase the magnitude of the pitch angle rate is relatively small and the profile is sufficiently smooth
to ensure a comfortable and safe landing.
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Figure 6.24: Optimal control (elevator deflection angle) for the aircraft landing problem.
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Figure 6.25: Optimal altitude trajectory for the aircraft landing problem.

6.4.4 Conclusions

In this work the variational formulation for the multilayer perceptron has been applied to find
the optimal control and the corresponding optimal trajectory of an aircraft landing system. The
results of the neural network are shown to give good performance qualities for the control inputs
and the state variables of the system.

However, this application does need some refinement. In particular, a more complete set of
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Figure 6.26: Optimal altitude rate trajectory for the aircraft landing problem.
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Figure 6.27: Optimal pitch angle trajectory for the aircraft landing problem.

state equations describing the aircraft dynamics should be used.
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Figure 6.28: Optimal pitch angle rate trajectory for the aircraft landing problem.
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Chapter 7

Inverse problems

Here the main issues concerning the theory of inverse problems are covered. These concern varia-
tional nature and ill-posseness, so that neural networks can be trained to learn the solution of this
type of problems.

Two artificially generated inverse problems are here attempted for validation, achieving good
results. As they make use of the finite element method, neural networks can be seen as a valuable
tool for real problems. A real application in the metallurgical industry is also satisfactorily resolved
in this section.

7.1 Problem formulation

Inverse problems can be described as being opposed to direct problems. In a direct problem the
cause is given, and the effect is determined. In an inverse problem the effect is given, and the
cause is estimated [54]. There are two main types of inverse problems: input estimation, in which
the system properties and output are known and the input is to be estimated; and properties
estimation, in which the the system input and output are known and the properties are to be
estimated [54]. Inverse problems are found in many areas of science and engineering.

An inverse problem is specified by:

(i) A mathematical model of the system.

(ii) A set of actual observations to that system.

(iii) A statement of the physical constraints.

(iv) A specification of the error measure.

Mathematical model

The mathematical model can be defined as a representation of the essential aspects of some system
which presents knowledge of that system in usable form.

Let us represent y(x) the vector of unknowns (inputs or properties) and u(x) the vector of
state variables. The mathematical model, or state equation, relating unknown and state variables
takes the form

L(y(x),u(x),x) = f , (7.1)

139
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where L is some algebraic or differential operator and f is some forcing term.

Observed data

Inverse problems are those where a set of measured results is analyzed in order to get as much
information as possible on a mathematical model which is proposed to represent a real system.

Therefore, a set of experimental values on the state variables is needed in order to estimate the
unknown variables of that system. This observed data is here denoted û(x).

In general, the observed data is invariably affected by noise and uncertainty, which will translate
into uncertainties in the system inputs or properties.

Physical constraints

For inverse problems, the presence of restrictions is typical. Two possible classes of constraints are
unknowns and state constraints.

The former are defined by the allowable values on the inputs or the properties of the system,
depending on whether the we are talking about an input or a property estimation problem. Two
typical types of constraints here are boundary conditions and lower and upper bounds.

State constraints are those conditions that the system needs to hold. This type of restrictions
depend on the particular problem.

In this way, an unknown which satisfies all the input and state constraints is called an admissible
unknown [53].

Definition 12 (Admissible unknown). An unknown y(x) which satisfies all the constraints is
called an admissible unknown. The set of admissible unknowns can be denoted Y , and the notation
y(x) ∈ Y means that the unknown y(x) is admissible.

Also, a state which satisfies the state constraints is called an admissible state [53].

Definition 13 (Admissible state). A state u(x) which satisfies the state constraints is called an
admissible state. The set of admissible states will be denoted by U, and u(x) ∈ U means that
u(x) is admissible.

Error functional

The inverse problem provides a link between the outputs from the model and the observed data.
When formulating and solving inverse problems the concept of error functional is used to specify
the proximity of the state variable u(x) to the observed data û(x):

E : Y → R

y(x) 7→ E[y(x)].

The error functional E[y(x)] is of the form

E[y(x)] = ‖u(x)− û(x)‖, (7.2)

where any of the generally used norms may be applied to characterize the proximity of u(x) and
û(x). Some of them are the sum squared error or the Minkowski error. Regularization theory can
also be applied here [18].

The solution of inverse problems is then reduced to finding of extremum of a functional:
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Problem 9 (Inverse problem). Let Y and U be the function spaces of all admissible unknowns
and states, respectively. Find an admissible unknown y∗(x) ∈ Y which causes the system

L(y(x;α),u(x),x) = f

to follow an admissible state u∗(x) ∈ U , and for which the error functional

E[y(x)],

defined on Y , takes on a minimum value.

On the other hand, inverse problems might be ill-posed [95]. A problem is said to be well
possed if the following conditions are true: (a) the solution to the problem exists ; (b) the solution
is unique; and (c) the solution is stable. This implies that for the above-considered problems, these
conditions can be violated. Therefore, their solution requires application of special methods. In
this regard, the use of regularization theory is widely used [30].

Solution approach

In some elementary cases, it is possible to establish analytic connections between the sought inputs
or properties and the observed data. But for the majority of cases the search of extrema for the
error functional must be carried out numerically, and the so-called direct methods can be applied.

A variational formulation for neural networks provides a direct method for the solution of
variational problems, and therefore inverse problems. Following the nomenclature here introduced,
the inverse problem for the multilayer perceptron can be formulated as follows:

Problem 10 (Inverse problem for the multilayer perceptron). Let Y and U be the function
spaces of admissible unknowns and states, respectively. Let also V be the space consisting of
all unknowns y(x;α) that a given multilayer perceptron can define, with dimension s. Find an
admissible unknown y∗(x;α∗) ∈ Y which causes the system

L(y(x;α),u(x),x) = f

to be in an admissible state u∗(x) ∈ U , and for which the error functional

E[y(x;α)],

defined on V , takes on a minimum value.

7.2 Validation examples

A variational formulation for the multilayer perceptron is general enough to incorporate a large
number of novel applications such as inverse problems. This class of problems is illustrated with
several examples for validation. The selected applications are easy to understand and are artificially
generated, thus allowing to compare the neural network results against the exact ones.
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7.2.1 The boundary temperature estimation problem

This is an input estimation problem, with one input and one output. The error functional is
computed by integrating a partial differential equation. This is done with the finite element
method.

Problem statement

Consider the heat transfer equation in a domain Ω with boundary Γ,

∇2T (x, y; t) =
∂T (x, y; t)

∂t
in Ω, (7.3)

T (x, y; 0) = T0 in Ω, (7.4)
T (x, y; t) = TΓ(t) on Γ, (7.5)

for t ∈ [0, tf ], and where T0 is the initial temperature and TΓ(t) is the boundary temperature,
which varies with time.

On the other hand, consider a set of temperature measurements at some point (a, b) on Ω,

t1 T̂1

t2 T̂2

...
...

tP T̂P

where P is the number of observed samples.
The problem is to estimate the boundary temperature TΓ(t) for t ∈ [0, tf ], from the heat

transfer model and the observed temperature data. Figure 7.1 is a graphical statement of the
input estimation problem considered here.

−0.5 0 0.5
−0.5

0

0.5

x

y

Ω

Γ

(a,b)

Figure 7.1: The boundary temperature estimation problem statement.
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The selected error functional for this inverse problem is the mean squared error between the
model temperatures and the experimental temperatures. The argument of this functional is the
boundary temperature which is to be found,

E[TΓ(t)] =
1
P

P∑
i=1

(
T (a, b; ti)− T̂i

)2

. (7.6)

In this case study the domain is taken to be the square Ω = {(x, y) : |x| ≤ 0.5, |y| ≤ 0.5} with
boundary Γ = {(x, y) : |x| = 0.5, |y| = 0.5}.

A set of 101 temperature samples at the center of the square (a, b) = (0, 0) is artificially gen-
erated from the following expression for the boundary temperature, which is therefore considered
to be the analytical solution to the problem,

TΓ(t) =
exp

(
−(t− µ)2/2σ2

)
σ
√

2π/8
(7.7)

for t = [0, 1] and with µ = 0.5 and σ = 0.05. Figure 7.2 shows the analytical boundary temperature
in Equation (7.7) and its corresponding center temperature.
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Figure 7.2: Analytical boundary temperature and corresponding center temperature.

Selection of function space

The neural network used to represent the boundary temperature TΓ(t), for t ∈ [0, 1], is a multilayer
perceptron with 1 input, 3 sigmoid hidden neurons and 1 linear output neuron. It constructs a
family V of parameterized functions TΓ(t;α) of dimension s = 10, which is the total number of
biases and synaptic weights. Figure 7.3 is a graphical representation of this network architecture.

Elements of V are written



144 CHAPTER 7. INVERSE PROBLEMS

t TGamma

Figure 7.3: Network architecture for the boundary temperature estimation problem.

y : R → R

x 7→ y(x;α),

with

TΓ(t;α) = b
(2)
1 +

3∑
j=1

w
(2)
1j tanh

(
b
(1)
j + w

(1)
j1 t
)
. (7.8)

The free parameters are here initialized at random. This provides a random initial boundary
temperature.

Formulation of variational problem

From Equation (7.6) the statement of this problem is to find a function T ∗Γ(t;α∗) ∈ V for which
the error functional

E[TΓ(t;α)] =
1
P

P∑
i=1

(
T (a, b; ti)− T̂i

)2

, (7.9)

defined on V , takes on a minimum value.
Evaluation of the objective functional (7.9) requires a numerical method for integration of

partial differential equations. Here we choose the finite element method [102]. For this problem
we use a triangular mesh with 888 elements and 485 nodes.

The objective function gradient vector ∇f(α) [15] is carried out by means of numerical differ-
entiation. In particular, we use the symmetrical central differences method [15] with an epsilon
value of 10−6.

Solution of reduced function optimization problem

Here we use a quasi-Newton method with BFGS train direction and Brent optimal train rate
methods for training [15]. The tolerance in the Brent’s method is set to 10−6. While other
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methods might suffer from local optima in this problem, the neural networks method proposed
here has demonstrated convergence to the global optimum in this problem.

In this example, we set the training algorithm to stop when the optimal training rate for a
gradient descent direction is zero. That means that the necessary condition for a local minimum
has about been satisfied.

The initial mean squared error is 0.443 and the gradient norm 0.230. During the training
process the objective function decreases until the stopping criterium is satisfied. This happens
at epoch 95, when the mean squared error has fallen to 5.117 · 10−5 and the gradient norm is
1.252 · 10−3. Figures 7.4 and 7.5 show this training history for the evaluation and the gradient
norm variables, respectively. The y-axis in in logarithmic scale at both plots.
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Figure 7.4: Evaluation history for the boundary temperature estimation problem.

Table 7.1 shows the training results for this problem. Here N denotes the number of epochs, M
the number of objective evaluations, CPU the computing time in a laptop AMD 3000, ‖α∗‖ the
final parameters norm, e(α∗) the final mean squared error value, and ‖∇e(α∗)‖ the final objective
function gradient norm.

N = 95
M = 7845

CPU = 03 : 23 : 09
‖α∗‖ = 24.423
e(α∗) = 5.117 · 10−5

‖∇e(α∗)‖ = 1.252 · 10−3

Table 7.1: Training results for the boundary temperature estimation problem.

Figure 7.6 shows the boundary temperature estimated by the neural network and the corre-
sponding temperature at the center of the square. Comparing Figures 7.2 and 7.6 we can see that
the estimated boundary temperature matches the actual boundary temperature to a great extent.
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Figure 7.5: Gradient norm history for the boundary temperature estimation problem.
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Figure 7.6: Neural network results for the boundary and corresponding center temperatures.

The expression for the boundary temperature by the trained neural network is as follows,

T ∗Γ(t;α∗) = 0.101729
− 0.681005 tanh (−9.55196 + 17.5454t)
− 0.104851 tanh (11.6386 + 69.6148t)
− 0.677045 tanh (9.90625 +−21.9968t). (7.10)
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7.2.2 The thermal conductivity estimation problem

Problem statement

For this problem, consider a 2-dimensional inhomogeneous medium with domain Ω and boundary
Γ, in which the thermal conductivity is to be estimated. The mathematical model of heat transfer
here is

∇ (ρ(x, y)∇T (x, y; t)) =
∂T (x, y; t)

∂t
in Ω, (7.11)

T (x, y; 0) = T0 in Ω, (7.12)
T (x, y; t) = TΓ on Γ, (7.13)

for t ∈ [0, tf ], and where ρ(x, y) is the thermal conductivity, T0 is the initial temperature and TΓ

is the boundary temperature.
On the other hand, experimental data is obtained from measurements of the temperature for

different time steps and at different points on the domain

t1 T̂11 T̂12 . . . T̂1Q

t2 T̂21 T̂22 . . . T̂2Q

...
...

...
. . .

...
tP T̂P1 T̂P2 . . . T̂PQ

where P and Q are the number of time steps and points considered, respectively.
Figure 7.7 is a graphical statement of this situation.
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Figure 7.7: The thermal conductivity estimation problem statement.

The goal here is to estimate the thermal conductivity ρ(x, y), so that the heat equation model
matches the experimental data. In this way, the objective functional for this problem can be the
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mean squared error between the computed temperature for a given thermal conductivity and the
measured temperature,

E[ρ(x, y)] =
1

PQ

P∑
i=1

 Q∑
j=1

(
T (xj , yj ; ti)− T̂ij

)2

 . (7.14)

For this example we take the problem domain to be the square Ω = {(x, y) : |x| ≤ 0.5, |y| ≤ 0.5}
with boundary Γ = {(x, y) : |x| = 0.5, |y| = 0.5}. That domain is discretized with a triangular
mesh composed of 888 elements and 485 nodes, and the time is also discretized in 11 time steps.
On the other hand, artificial temperature data is generated with the following expression for the
thermal conductivity, which will be considered to be the analytical solution to this problem,

ρ∗(x, y) = x2 + y2. (7.15)

Selection of function space

The thermal conductivity ρ(x, y) in Ω is represented by a multilayer perceptron with a sigmoid
hidden layer and a linear output layer. The neural network must have two inputs and one output
neuron. We guess a good number of neurons in the hidden layer to be three. This neural network
is denoted as a 2 : 3 : 1 multilayer perceptron.

It spans a family V of parameterized functions ρ(x, y;α) of dimension s = 13, which is the
number of parameters in the neural network. Figure 7.8 is a graphical representation of this
network architecture.

x

rho

y

Figure 7.8: Network architecture for the thermal conductivity estimation problem.

Such a multilayer perceptron spans a family V of parameterized functions ρ(x, y;α) of dimension
s = 19, which is the number of parameters in the network. Elements V are of the form

ρ : R2 → R

(x, y) 7→ ρ(x, y;α),

where

ρ(x, y;α) = b
(2)
1 +

3∑
j=1

w
(2)
1j · tanh

(
b
(1)
j + w

(1)
j1 x + w

(1)
j2 y

)
. (7.16)
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On the other hand, the biases and synaptic weight are initialized at random, which means that
a random initial guess is used for the thermal conductivity.

Formulation of variational problem

Following Equation 7.14 the variational statement for this properties estimation inverse problem
is to find a function ρ∗(x, y;α∗) for which the mean squared error functional

E[ρ(x, y;α)] =
1

PQ

P∑
i=1

 Q∑
j=1

(
T (xj , yj ; ti)− T̂ij

)2

 , (7.17)

defined on V takes on a minimum value
Evaluation of the objective functional (7.17) requires a numerical method for integration of

partial differential equations. Here we choose the Finite Element Method [102]. For this problem
we use a triangular mesh with 888 elements and 485 nodes.

Last, evaluation of the gradient, ∇f(α), is carried out by means of numerical differentiation.
In particular, the central differences method is used with an ε value of 10−6 [15] .

Solution of reduced function optimization problem

A suitable training algorithm for this problem is a quasi-Newton method with BFGS train direc-
tion and Brent optimal train rate methods for training [83]. Indeed, this training algorithm has
demonstrated fully convergence to the global optimum in this problem.

In this example, we set the training algorithm to stop after when the training rate is zero for a
gradient descent train direction. During the training process, which lasts for 168 epochs, the error
decreases from 1.117 to 2.868 · 10−5, and the gradient norm from 0.466 to 1.106 · 10−6. Figures 7.9
and 7.10 show, with a logarithmic scale for the y-axis, the evaluation and gradient norm histories
of the neural network training process.

Table 7.2 shows the training results for this problem. Here N denotes the number of training
epochs, M the number of objective functional evaluations, CPU the CPU time in seconds for a
laptop AMD 3000, ‖α‖ the final parameters norm, f(α∗) the final objective function evaluation,
and ‖∇f(α∗)‖ its gradient norm.

N = 168
M = 10476

CPU = 16253
‖α∗‖ = 21.606
f(α∗) = 2.868 · 10−5

‖∇f(α∗)‖ = 1.106 · 10−3

Table 7.2: Training results for the thermal conductivity estimation problem.

The solution here is good, since the mean squared error between the output from the model
and the experimental data is of order 10−6 and the estimated thermal conductivity matches very
well the actual thermal conductivity given by Equation (7.15). Figure 7.11 shows the thermal
conductivity estimated by the neural network for this problem.

Finally, the analytical expression of the function represented by the trained multilayer percep-
tron is as follows,
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Figure 7.9: Evaluation history for the thermal conductivity estimation problem.
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Figure 7.10: Gradient norm history for the thermal conductivity estimation problem.

ρ∗(x, y;α∗) = 51.6455
+ 45.7732 tanh (−0.551456− 0.143683x− 0.0824186y)
− 30.2139 tanh (0.646978− 0.238919x + 0.0769619y)
− 19.8059 tanh (0.661936− 0.00304418x− 0.333647y). (7.18)
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Figure 7.11: Neural network results to the thermal conductivity estimation problem.

7.3 Microstructural modeling of aluminium alloys

This work presents a neural networks approach for modeling the dissolution rate of hardening
precipitates in aluminium alloys using inverse analysis. The effective activation energy is also in
unison determined as that providing the best results.

As way of illustration, a class of multilayer perceptron extended with independent parameters is
trained to find the optimal dissolution curve of hardening precipitates and the effective activation
energy of aluminium alloys 2014-T6 and 7449-T79. The results from this Section are published in
[65].

7.3.1 Introduction

In heat-treatable aluminium alloys, the dominant microstructural effects are due to changes in
the precipitation state of the material, which provide the principal strengthening mechanism [77].
Modeling the dissolution rate of hardening precipitates is therefore of great importance for pre-
dicting the hardness distribution after reheating and subsequent natural ageing of the base metal.
Subsequent applications of that dissolution model involve a wide range of operational conditions,
such as multi-step isothermal heat treatments and continuous thermal cycles [77].

In this regard, various semi-empirical approaches to model the dissolution rate of hardening
precipitates in aluminium alloys have proposed in the literature.

The dissolution model of Myhr and Grong [77] is composed from elements derived from ther-
modynamics, kinetic theory and simple dislocation mechanics, and provides the most important
ideas from which this work is developed. It contains a single independent variable, the time, and
a single state variable, the volumetric fraction of hardening precipitates. The Myhr and Grong
dissolution model provides a basis for obtaining quantitative information of the reaction kinet-
ics through simple hardness measurements, rather than through microscopic observations of the
precipitates fraction.

However, Shercliff et al. [92] showed that the dissolution model of Myhr and Grong overesti-
mates the amount of relative volumetric fraction of precipitates at the later stages of this process.
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They also proposed a new form for the curve of dissolution.
In this work a novel approach using neural networks is proposed for the identification of mi-

crostructural parameters for precipitates dissolution in precipitation hardenable aluminium alloys.
The microstructural modeling of aluminium alloys is formulated as a variational problem includ-
ing independent parameters. This makes it possible to be approached with an extended class of
multilayer perceptron to construct the model of different aluminium alloys [68].

The novel methodology is here applied to two different aluminium alloys, 2014-T6 and 7449-
T79. The experimental hardness data needed to construct the model is taken from both the
literature and through independent measurements.

Section 7.3.2 deals with the physical basis of the dissolution model, which are due to Myhr
and Grong. The modeling problem is then formulated as a variational problem with associated
independent parameters.

In Section 7.3.3 describes the two materials studied here, aluminium 2014-T6 and aluminium
7449-T79. The experimental data actually employed in the construction of the model is also
depicted.

Section 7.3.4 describes the application of the model for the two case studies with a neural
network. The dissolution rate of hardening precipitates in these aluminium alloys is modeled, and
the effective activation energy is also in unison determined as that providing the best results.

Both the source code and the experimental data used in this work can be found in the open
source neural networks C++ library Flood [61].

7.3.2 Dissolution models for aluminium alloys

First, and assuming that the nucleation of precipitates is negligible compared to the dissolution
of precipitates, the following linear relationship between the Vickers hardness and the volumetric
fraction of precipitates can be established [78]

f

f0
(HV ) =

HV −min (HV )
max (HV )−min (HV )

, (7.19)

where HV is the actual hardness, max (HV ) is the initial hardness in the hardened state, and
min (HV ) is the final hardness after complete dissolution of the precipitates, which can be obtained
directly from a Vickers hardness test. Equation (7.19) is extremely useful since the hardness is
much easier to measure than the relative volume fraction of precipitates.

On the other hand, as it has been said above, this work is based on the model developed by
Myrh and Grong [77] for cylindrical precipitates. This describes the kinetic of transformation of
hardening precipitates in aluminium alloys at constant temperature by the following expression,

f

f0
(t) = 1−

√
t

t∗(T )
, (7.20)

where f/f0 is the ratio of the current volume fraction of hardening precipitates f to the initial
volume fraction of hardening precipitates f0, t is the time and t∗(T ) is the time for complete
dissolution at temperature T . The full dissolution time t∗(T ) can be calculated as [77]

t∗(T ) = tR exp
[
Q

R

(
1
T
− 1

TR

)]
, (7.21)
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where R = 8.314 ·10−3kJ/molK is the universal gas constant, tR is the reference time for complete
dissolution at the reference temperature TR selected for calibration, and Q is the effective activation
energy for precipitates dissolution.

It is easy to see that taking log (1− f/f0) as a function of log (t/t∗) in Equation (7.20), the
resulting plot results in a straight line of slope 0.5.

However, as it was shown by Shercliff et al. [92], the dissolution model of Myrh and Grong
overestimates the dissolution rate at the later stages. Shercliff et al. proposed a new model of the
form

log (1− f

f0
) = g(log (

t

t∗
)). (7.22)

where g is a function whose form is given by a “look-up table”. Here the early stages of dissolution
follow a straight line of gradient 0.5, but this slope steadily decreases at the later stages.

The results from this work will show that although Equation (7.22) seems to give a good
estimation at medium and later stages of dissolution, it underestimates the dissolution rate at the
lower stages.

The formulation of Shercliff et al. also presents some other drawbacks. First, the modeling
process occurs in two steps, estimation of the effective activation energy and generation of the
dissolution model. This results in poor accuracy. Second, a “look-up table” is an unsuitable
result here. Third, the logarithmic representation in the y-axis produces spurious effects. Indeed,
separates the data at the lower stages of dissolution and joins it at the later stages.

The representation of the dissolution model proposed in this work is logarithmic in the x-axis
but not in the y-axis. In particular it is of the form

1− f

f0
= g(log (

t

t∗
)). (7.23)

where the function g is to be found from a suitable function space.
The representation for the dissolution model of Equation (7.23) is chosen instead that of Equa-

tion (7.22) for a number of reasons: First, it makes the y-axis varying from 0 to 1 and second, it
gives all dissolution values the same importance.

The dissolution modeling process is to estimate an activation energy Q providing minimum dis-
persion for the experimental data while a function g(·) providing minimum error. Mathematically,
this can be formulated as a variational problem including independent parameters.

7.3.3 Experimental data

Experimental tests have been performed in order to get the isothermal time evolution of Vickers
hardness at different temperatures and for various aluminium alloys. In particular, two materials
have been used for the isothermal heat treatments, 2014-T6 and 7449-T79 aluminium alloys.

The Vickers hardness data for aluminium alloy 2014-T6 is taken from [92], while that for
aluminium alloy 7449-T79 is obtained from an independent test performed within the DEEPWELD
Specific Targeted Research Project (STREP) co-funded by the 6th Framework Programme of the
European Community (AST4-CT-2005-516134).

For both types of aluminium, each sample was immersed in a salt bath at different tempera-
tures ranging from 200◦C to 400◦C during periods ranging from 2 seconds to about 1 day. The
samples were then water quenched. Immediately after, the surface was polished and about five
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Vickers hardness measurements were performed at room temperature on each sample. The hard-
ness measurements were repeated one week later to observe ageing. The total number of samples
for aluminium 2014-T6 is 45, and the total number of samples aluminium 7449-T79 is 70.

Figures 7.12 and 7.13 depict these Vickers hardness test for aluminium alloys 2014-T6 and
AA7449-T6, respectively. Note that, in both figures the Vickers hardness decreases with the time,
due to dissolution of hardness precipitates.
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Figure 7.12: Vickers hardness test for aluminium alloy 2014-T6.
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Figure 7.13: Vickers hardness test for aluminium alloy 7449-T79.

Table 7.3 shows the parameters used here for both aluminium alloys needed to transform
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from Vickers hardness to volumetric fraction of hardening precipitates in Equation (7.19). Here
min (HV ) is the minimum Vickers hardness, max (HV ) is the maximum Vickers hardness, tR[s],
is the reference time in seconds and TR[K] is the reference temperature in Kelvin.

Aluminium min (HV ) max (HV ) tR[s] TR[K]
2014-T6 65 155 10000 573.16
7449-T79 63 207.5 16 623.16

Table 7.3: Parameters for aluminium alloys 2014-T6 and 7449-T79.

7.3.4 Numerical results

A variational formulation for neural networks is in this section applied to find the optimal disso-
lution model and effective activation energy of aluminium alloys 2014-T6 and 7449-T79.

Selection of function space

The first step is to choose a function space to represent the dissolution model (1−f/f0)(log (t/t∗)).
Here a multilayer perceptron with a sigmoid hidden layer and a linear output layer is used. This
neural network is very useful in inverse problems, since it is a class of universal approximator [49].

The number of inputs and output neurons are constrained by the problem. Here the multilayer
perceptron must have one input, log (t/t∗), and one output neuron, 1−f/f0. However, the number
of hidden neurons is a design variable in the problem.

In order to draw a correct network architecture for the dissolution model, different sizes for the
hidden layer are compared and that providing best validation performance is chosen. In particular,
the Vickers hardness tests are divided into training and validation subsets. A multilayer perceptron
with 1, 2 and 3 hidden neurons are then trained with the training data and their performance
against the validation data are compared. It is found that the optimal network architecture for
the two case studied considered here is that with 1 hidden neuron.

Overall, the network architecture used to represent the dissolution model for aluminium 2014-T6
and aluminium 7449-T79 has one input, one sigmoid hidden neuron and one linear output neuron.
This is the simplest multilayer perceptron possible. Figure 7.14 is a graphical representation of
this network architecture.

log(t/t *) 1-f/f 0

Figure 7.14: Network architecture for aluminium alloys 2014-T6 and 7449-T79.

On the other hand, and in order to obtain a correct representation for the solution, information
about the effective activation energy is required. Thus, an independent parameter Q must be
associated to the multilayer perceptron. Note that a standard software tool which implements the
multilayer perceptron will not be capable of dealing with this problem, since it needs to include
independent parameters.
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This extended class of multilayer perceptron spans a family V of functions (1−f/f0)(log (t/t∗;α,Q)
of dimension d = 4 + 1, where 4 is the number of biases and synaptic weights and 1 is the number
of independent parameters. Elements of V are of the form

1− f

f0
: R → R

log (
t

t∗
) 7→ (1− f

f0
)(log (

t

t∗
);α,Q).

Here the biases and synaptic weights, α, are initialized at random in the interval [−1, 1], and
the activation energy, Q, is also initialized at random in the interval [100, 200]. In this way a
random model with a random value for the activation energy is used as an initial guess.

Formulation of variational problem

The second step is to select an appropriate objective functional, in order to formulate the variational
problem. A Minkowski error could be used here to perform robust modeling. Also, a regularization
term could be included to prevent overfitting. However, the Vickers hardness tests for both alloys
do not show the presence of significant outliers. Also, the network architecture chosen is that
providing the minimum validation error. So instead, the simpler mean squared error between the
dissolution model and the volumetric fraction data is used. The mathematical expression of this
objective functional is

F

[
(1− f

f0
)(log (

t

t∗
);α,Q)

]
=

1
S

S∑
s=1

(
(1− f

f0
)(log (

t

t∗
);α,Q)(s) − (1− f

f0
)(s)
)2

(7.24)

where S is the number of samples available, and (1− f/f0)(s) is calculated by means of Equation
7.19.

Note that, in Equation (7.24), the pairs of values (log (t/t∗), 1− f/f0) are not fixed, since they
depend on the particular value used for the effective activation energy Q. In this way, the optimal
value for this independent parameter will provide the minimum dispersion of the data. As a
consequence, a standard software tool implementing the mean squared error will not be applicable
to this problem. Instead, programming the objective functional for this particular application is
required.

The variational problem can then be formulated so as to find a function (1−f/f0)∗(log (t/t∗);α∗, Q∗)
and an independent parameter Q∗ for which the objective functional in Equation (7.24) takes on
a minimum value.

On the other hand, evaluation of the objective function gradient vector, ∇f(α,Q), is performed
via numerical differentiation. In particular, the central differences method is used with an epsilon
value of 10−6.

Solution of reduced function optimization problem

The third step is to choose a suitable training algorithm to solve the reduced function optimization
problem. To check for presence of local minima a quasi-Newton method with BFGS train direction
and Brent optimal train rate methods has been used from different initial guesses. The results
provided are in all cases the same, and no local minima seem to appear for these particular case
studies.
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For both aluminium alloys, the training algorithm is set to stop when the quasi-Newton method
cannot perform any better. At this point the algorithm gives zero optimal train rate in the Brent
method for some gradient descent train direction. Figures 7.15 and 7.16 depict the training history
for aluminium alloys 2014-T6 and 7449-T79, respectively. Note that a base 10 logarithmic scale
is used for the y-axis in both plots. They depict the mean squared error value and its gradient
norm as a function of the training epoch. In both figures the evaluation decreases very fast during
the first few epochs to reach a stationary value. Also, the gradient norm approaches a very small
value. These two signs indicate that the algorithm has fully converged to a minimum.

0 5 10 15 20 25 30 35 40

10
−10

10
−5

10
0

Aluminium 2014−T6

epoch

f,
|| 

∇
 f

 ||
/s

 

 

Evaluation
Gradient norm

Figure 7.15: Training history for aluminium alloy 2014-T6.

Table 7.4 shows the training results for these case studies. Here N denotes the number of
epochs, M the number of evaluations, CPU the CPU time in a laptop AMD 3000, f(α∗, Q∗)
the final objective function value, ∇f(α∗, Q∗) its gradient norm and Q∗ the optimum effective
activation energy.

Aluminium N M CPU f(α∗, Q∗) ∇f(α∗, Q∗) Q∗

2014-T6 38 1614 1 s 4.465 · 10−2 8.453 · 10−11 151.636
7449-T79 27 1282 1 s 5.398 · 10−2 9.854 · 10−10 145.458

Table 7.4: Training results for aluminium alloys 2014-T6 and 7449-T79.

The mathematical expression of the dissolution model provided by the neural network for
aluminium 2014-T6 is given by

(1− f

f0
)(log (

t

t∗
);α∗, Q∗) =

1
2

{
0.0324727

+ 0.959812 tanh
[
1.0037 + 3.67865

(
2
log (t/t∗) + 6

12
− 1
)]

+ 1

}
. (7.25)
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Figure 7.16: Training history for aluminium alloy 7449-T79.

with Q∗ = 151.636. The mathematical expression for aluminium 7449-T79 is

(1− f

f0
)(log (

t

t∗
);α∗, Q∗) =

1
2

{
− 0.0159086

+ 0.974911 tanh
[
0.259412 + 3.15452

(
2
log (t/t∗) + 6

12
− 1
)]

+ 1

}
. (7.26)

with Q∗ = 145.458.
Figures 7.17 and 7.18 show the dissolution models for aluminium 2014-T6 and aluminium 7449-

T79, respectively. Comparing the shape of these curves to those reported in the literature there
are similarities and differences. For medium and high stages of dissolution they are very similar
tho those reported by Shercliff et al. [92]. However, these results show that the dissolution model
Shercliff et al. underestimates the dissolution rate at the lower stages, while the neural networks
method does not.

7.3.5 Conclusions

Neural networks were successfully used to calibrate a simple microstructure model based on disso-
lution of the hardening precipitates.

Future work includes applying of the dissolution model for process simulation in the metallur-
gical industry, such as friction stir welding.
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Figure 7.17: Dissolution model for aluminium alloy 2014-T6.
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Figure 7.18: Dissolution model for aluminium alloy 7449-T79.



This page is intentionally left blank.



Chapter 8

Optimal shape design

This section includes a short survey to optimal shape design, a theory which is developed from the
abstract field of calculus of variations. In this way, optimal shape design is here stated as a new
learning task for the multilayer perceptron.

The application of this approach is validated through an optimal shape design problem whose
exact solution is known. More practical implementation issues are studied by using a neural
network to design an airfoil with given thickness and providing maximum aerodynamic efficiency
for transonic flight conditions.

8.1 Mathematical formulation

Optimal shape design is a very interesting field both mathematically and for industrial applications.
The goal here is to computerize the design process and therefore shorten the time it takes to design
or improve some existing design. In an optimal shape design process one wishes to optimize a
criteria involving the solution of some mathematical model with respect to its domain of definition
[74]. The detailed study of this subject is at the interface of variational calculus and numerical
analysis.

In order to properly define an optimal shape design problem the following concepts are needed:

(i) A mathematical model of the system.

(ii) A statement of the physical constraints.

(iii) A specification of the performance criterion.

Mathematical model

The mathematical model is a well-formed formula which involves the physical form of the device to
be optimized. Let define y(x) the shape variables and u(x) the state variables. The mathematical
model or state equation can then be written as

L(y(x),u(x),x) = f , (8.1)

where L is some algebraic or differential operator and f some forcing term.

161
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Physical constraints

An optimal shape design problem might also be specified by a set of constraints on the shape and
the state variables of the device.

Two important types of shape constraints are boundary conditions and lower and upper bounds.
If some outputs are specified for given inputs, then the problem is said to include boundary
conditions. On the other hand, if some shape variables are restricted to fall in some interval, then
the problem is said to have lower and upper bounds.

State constraints are conditions that the solution to the problem must satisfy. This type of
constraints vary according to the problem at hand.

In this way, a design which satisfies all the shape and state constraints is called an admissible
shape.

Definition 14 (Admissible shape). A shape y(x) which satisfies all the constraints is called an
admissible shape. The set of admissible shapes is denoted Y , and the notation y(x) ∈ Y means
that y(x) is admissible.

Similarly, a state which satisfies the constraints is called an admissible state.

Definition 15 (Admissible state). A state u(x) which satisfies the state variable constraints is
called an admissible state. The set of admissible states will be denoted by U, and u(x) ∈ U means
that the state u(x) is admissible.

Performance criterion

The performance criterion expresses how well a given design does the activity for which it has been
built. In optimal shape design the performance criterion is a functional of the form

F : Y → R

y(x) 7→ F [y(x)].

Optimal shape design problems solved in practice are, as a rule, multi-criterion problems.
This property is typical when optimizing the device as a whole, considering, for example, weight,
operational reliability, costs, etc. It would be desirable to create a device that has extreme values
for each of these properties. However, by virtue of contradictory of separate criteria, it is impossible
to create devices for which each of them equals its extreme value.

To sum up, the optimal shape design problem can be formulated as

Problem 11 (Optimal shape design problem). Let Y and U be the function spaces of admissible
shapes and states, respectively. Find an admissible shape y∗(x) ∈ Y which causes the system

L(y(x),u(x),x) = f

to be in an admissible state u∗(x) ∈ U and for which the performance criterion

F [y(x)]

takes on a minimum or maximum value. The function y∗(x) is called an optimal shape and the
function u∗(x) an optimal state.
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Solution methods

In general, there are no automatic solutions to optimal shape design problems. Therefore, the use
of direct methods usually becomes necessary.

A variational formulation for neural networks provides a direct method for the solution of vari-
ational problems. Therefore optimal shape design problems can be approached with this numerical
technique. From the nomenclature introduced in this section, the optimal shape design problem
for the multilayer perceptron can be written as follows:

Problem 12 (Optimal shape design problem for the multilayer perceptron). Let Y and U be the
function spaces of admissible shapes and states, respectively. Let also V be the space consisting
of all shapes y(x;α) that a given multilayer perceptron can define, with dimension s. Find an
admissible shape y∗(x;α∗) ∈ Y which causes the system

L(y(x;α),u(x),x) = f

to be in an admissible state u∗(x) ∈ U , and for which the performance criterion

F [y(x;α)],

defined on V , takes on a minimum or a maximum value.

8.2 Validation examples

In this section the application of optimal shape design problems for the multilayer perceptron is
validated by means of an unconstrained and a constrained problem. These case studies can be
solved analytically, which enables to compare the neural network results against the exact ones.

8.2.1 The minimum drag problem

The minimum drag problem for the multilayer perceptron is an optimal shape design problem
with one input and one output variables, besides two boundary conditions. It is defined by an
unconstrained objective functional requiring the integration of a function. This problem is included
with the Flood library [61], and it has been published in [64] and [63].

Problem statement

Consider the design of a body of revolution with given length l and diameter d providing minimum
drag at zero angle of attack and for neglected friction effects, see Figure 8.1.

The drag of such a body y(x) can be expressed as

D[y(x)] = 2πq

∫ l

0

y(x)[Cpy
′(x)]dx, (8.2)

where q is the free-stream dynamic pressure and Cp the pressure coefficient [17]. For a slender
body y′(x) � 1, the pressure coefficient can be approximated by the Newtonian flow relation

Cp = 2 [y′(x)]2 , (8.3)
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Figure 8.1: The minimum drag problem statement.

which is valid provided that the inequality y′(x) ≥ 0 is satisfied.
From Equations (8.2) and (8.3) we obtain the following approximation for the drag,

D[y(x)] = 4πq

∫ l

0

y(x)[y′(x)]3dx. (8.4)

It is convenient to introduce the following dimensionless variables associated with the axial
coordinate and the radial coordinate

ξ =
x

l
, (8.5)

η =
2y

d
. (8.6)

In that way, both ξ and η vary from 0 to 1.
Also, a dimensionless coefficient associated with the drag can be defined as

CD[η(ξ)] = τ2

∫ 1

0

η(ξ)[η′(ξ)]3dξ, (8.7)

where τ = d/l is the slenderness of the body.
The analytical solution to the minimum drag problem formulated in this section is given by

η∗(ξ) = ξ3/4, (8.8)

which provides a minimum value for the drag coefficient CD/τ2 = 0.4220.
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Selection of function space

The body of revolution η(ξ), for ξ ∈ [0, 1], will be represented by a multilayer perceptron with a
sigmoid hidden layer and a linear output layer. This axisymmetric structure is to be written in
cartesian coordinates, so the neural network must have one input and one output neuron. On the
other hand, an appropriate number of hidden neurons is believed to be three for this particular
application. This network architecture is depicted in Figure 8.2.

xi eta

Figure 8.2: Network architecture for the minimum drag problem.

Such a multilayer perceptron spans a family V of parameterized functions η(ξ;α) of dimension
s = 10, which is the number of parameters in the network. The elements of this function space are
of the form

η : R → R

ξ 7→ η(ξ;α),

where

η(ξ;α) = b
(2)
1 +

3∑
j=1

w
(2)
1j · tanh

(
b
(1)
j + w

(1)
j1 ξ

)
. (8.9)

The outputs from the neural network in Figure 8.2 must hold the boundary conditions η(0) = 0
and η(1) = 1. A suitable set of particular and homogeneous solution terms here is

ϕ0(ξ) = ξ, (8.10)
ϕ1(ξ) = ξ(ξ − 1), (8.11)

respectively. This gives

η(ξ;α) = ξ + ξ(ξ − 1)η(ξ;α). (8.12)

Also, the functions η(ξ) are constrained to lie in the interval [0, 1]. To deal with such constraints
the neural network outputs are bounded in the form
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η(ξ;α) =

 0, η(ξ;α) < 0.
η(ξ;α), 0 ≤ η(ξ;α) ≤ 1.
1, η(ξ;α) > 1.

(8.13)

The elements of the function space constructed so far indeed satisfy the boundary conditions
and the input constraints. Also, they are thought to have a correct complexity for this case study.

Experience has shown that this method does not require a good initial guess for the solution,
so the parameters in the neural network are initialized at random. This is a potential advantage
over other direct methods, in which a good initial guess for the solution might be needed. Figure
8.3 depicts the starting random shape for this problem.
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Figure 8.3: Initial guess for the minimum drag problem.

Formulation of variational problem

From Equation (8.7), the variational statement of this problem is to find a function η∗(ξ;α∗) ∈ V
for which the functional

CD[η(ξ;α)]/τ2 =
∫ 1

0

η(ξ;α)[η′(ξ;α)]3dξ, (8.14)

defined on V , takes on a minimum value.
In order to evaluate the objective functional in Equation (8.14) the integration of a function is

needed. Here we apply the Runge-Kutta-Fehlberg method [93] with tolerance 10−6.

Solution of reduced function optimization problem

Here we use a quasi-Newton method with BFGS train direction and Brent optimal train rate
methods for training [15]. The tolerance in the Brent’s method is set to 10−6.
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The objective function gradient vector ∇f(α) is calculated by means of numerical differentia-
tion. In particular, the symmetrical central differences method is used with ε = 10−6 [15].

The evaluation and the gradient norm of the initial guess are 0.56535 and 0.324097, respectively.
Trained is performed until the algorithm can not perform any better, that is, when the Brent’s
method gives zero train rate for a gradient descent train direction. This occurs after 759 epochs,
at which the objective function evaluation is 0.422. At this point the gradient norm takes a value
of 2.809 · 10−4. Figures 8.4 and 8.5 illustrate this training process.
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Figure 8.4: Evaluation history for the minimum drag problem.

0 100 200 300 400 500 600 700 800
10

−8

10
−6

10
−4

10
−2

10
0

epoch

gr
ad

ie
nt

 n
or

m

Figure 8.5: Gradient norm history for the minimum drag problem.
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Table 8.1 shows the training results for this problem. Here N is the number of training epochs,
M the number of objective function evaluations, CPU the CPU time for a laptop AMD 3000,
‖α∗‖ the final parameters norm, f(α∗) the final value for the objective function and ‖∇f(α∗)‖ the
final gradient norm.

N = 759
M = 38426

CPU = 354
‖α∗‖ = 122.752
f(α∗) = 0.422325

‖∇f(α∗)‖ = 2.80939 · 10−4

Table 8.1: Training results for the minimum drag problem.

Comparing the drag coefficient provided by that neural network (0.4223) to that by the ana-
lytical result (0.4220), these two values are almost the same. In particular, the percentage error
made by the numerical method is less than 0.1%.

The optimal shape design by the multilayer perceptron is depicted in Figure 8.6.
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Figure 8.6: Neural network results to the minimum drag problem.

Finally, an explicit expression of the shape of such an axisymmetric body is given by

η∗(ξ;α∗) = ξ + ξ(ξ − 1)[−164.639
− 275.014 tanh (−2.97601− 27.2435ξ)
− 79.9614 tanh (−2.62125− 3.7741ξ)
+ 201.922 tanh (−1.78294 + 0.0113036ξ)]. (8.15)
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8.3 Optimal airfoil design

A neural networks approach is proposed in this work for the designing of airfoil profiles with
maximum aerodynamic efficiency. A practical application is solved by integrating the software tools
Flood [61], GiD [25] and PUMI [79] for neural networks, pre and postprocessing and computational
fluid dynamics, respectively.

8.3.1 Introduction

The aerodynamic efficiency is the amount of lift generated by a wing or vehicle compared to the
drag it creates by moving through the air [43] [44]. It can therefore be defined as the Cl/Cd ratio,
where Cl and Cd are the lift and drag coefficients, respectively.

Improvement of the efficiency in one of the major goals in wing design. Indeed, since a given
aircraft’s needed lift does not change, delivering that lift with lower drag leads directly to better
fuel economy, climb performance and glide ratio. In order to obtain high efficiency it is essential
to design airfoils using shape optimization techniques [18]. The use of neural networks within a
variational formulation provides a direct method for the solution of optimal shape design problems
[63].

Neural networks have been widely applied in aeronautics. For instance, an aerodynamic design
procedure that incorporates that computational tool is described in [84]. However, the approach
here is different since an extended class of neural network is used to define the airfoil shape, and
not a response surface for the objective function.

The method is applied to the designing of the shape and the flight conditions of a transonic
airfoil. The results demonstrate that the approach is very useful for optimization, since the con-
structed neural network is able to represent an extensive family of airfoils for any flight condition.

8.3.2 Problem statement

An airfoil can be generated using analytical equations that describe the camber distribution of the
airfoil section, yc(x), as well as the thickness distribution, yt(x), for x ∈ [0, 1].

In order to determine the final coordinates for the airfoil upper surface (xU , yU ) and lower
surface (xL, yL) the following relationships are used

xU = x− yt sin (θ), (8.16)
yU = yc + yt cos (θ), (8.17)
xL = x + yt sin (θ), (8.18)
yL = yc − yt cos (θ), (8.19)

where

θ = arctan
(

dyc

dt

)
. (8.20)

A suitable airfoil must hold some conditions for the camber and the thickness distributions, as
well as for their derivatives.

The camber distribution must be zero at both borders of the airfoil. This can be written
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yc(0) = 0, (8.21)
yc(1) = 0. (8.22)

On the other hand, the thickness must be zero at the left and right borders, and it must take
the semi-maximum thickness value m/2 at the position of maximum thickness p,

yt(0) = 0, (8.23)
yc(p) = m/2, (8.24)
yc(1) = 0. (8.25)

The airfoil leading edge must be blunt, with a radius of curvature large enough to prevent
boundary layer separation. This is roughly equivalent to the following condition

y′t(0) = ∞. (8.26)

At the position of maximum thickness, the derivative of the thickness distribution must be zero

y′t(p) = 0. (8.27)

Finally, the trailing edge is sharp, forcing the flow to detach smoothly at the rear end of the
section. This can be written

y′t(1) 6= ∞. (8.28)

The aim is to determine the shape (yc, yt)(x) and the angle of attack, α, of an airfoil under
transonic flight conditions, providing maximum aerodynamic efficiency. The maximum thickness
p is given but the position of maximum thickness can vary in the interval m ∈ [1.0, 0.6]. The flow
is assumed to be Eulerian [79].

The maximum thickness is set here to be m = 1.5. In the flow model, the free-stream Mach
number is set to M∞ = 0.85.

8.3.3 Numerical results

The optimal shape design problem stated in the preceding subsection is approached in this one
using a variational formulation for the multilayer perceptron.

Selection of function space

The network architecture used here is a multilayer perceptron with a sigmoid hidden layer and a
linear output layer. It must have one input, x, and two output neurons, yc and yt. Three neurons
are used in the hidden layer, i.e. a 1 : 3 : 2 multilayer perceptron layer is used here as shown in
Figure 8.7.

It is very desirable to include as much a priory information of the problem as possible, in order
to span a more suited function space here.
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Figure 8.7: Network architecture for the designing of an optimal airfoil.

In this way, two independent parameters are associated to the neural network, the position
of the maximum thickness p and the angle of attack α. The total set of free parameters is thus
β = (ω, p, α), where ω is the vector of all the biases and synaptic weights in the neural network.

A few steps must be performed in order to span a proper function space for this problem. These
are detailed in the following points.

1. Preprocess input

The inputs to the neural network are first preprocessed with the minimum and maximum
method in get input signals lying in the interval x ∈ [−1, 1]. For that purpose we use the values
min (x) = 0 and max (x) = 1,

x = 2
x−min (x)

max (x)−min (x)
− 1, (8.29)

where min (x) = 0 and max (x) = 1 are the minimum and the maximum values of the input
variable, respectively.

2. Obtain output signals

The explicit expression for the output signals by the neural network diagram in Figure 8.7 is
of the form

yc(x;β) = b
(2)
1 +

3∑
j=1

w
(2)
1j tanh

(
b
(1)
j + w

(1)
j1 x

)
, (8.30)

yt(x;β) = b
(2)
2 +

3∑
j=1

w
(2)
2j tanh

(
b
(1)
j + w

(1)
j1 x

)
. (8.31)

3. Postprocess output signals

The output signals from the neural network are postprocessed so as to obtain outputs of the
form yc(x) ∈ [min (yc),max (yc)] and yt(x) ∈ [min (yt),max (yt)], approximately. This for of post-
processing is given by

yc = 0.5 (yc + 1) (max (yc)−min (yc)) + min (yc), (8.32)
yt = 0.5 (yt + 1) (max (yt)−min (yt)) + min (yt), (8.33)

(8.34)
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where min (yc), max (yc), min (yt) and max (yt) are an estimation of the minimum and the max-
imum values of the output variables. A good set for these values depends on the particular and
homogeneous terms used to satisfy the boundary conditions. Here we have chosen −0.01, 0.01,
−0.001 and 0.001, respectively.

4. Apply boundary conditions

The outputs from the neural network in Figure 8.7 must hold the conditions (8.21), (8.22),
(8.23), (8.24), (8.25), (8.26), (8.27) and (8.28). A suitable set of particular and homogeneous
solutions for the camber and the thickness, ϕ0c(x), ϕ0t(x), ϕ1c(x) and ϕ1t(x), distributions is thus
chosen.

A particular solution for the camber distribution can the mean center line,

ϕ0c(x) = 0, (8.35)

which indeed satisfies ϕ0c(0) = 0 and ϕ0c(1) = 0.
The selected particular solution for the thickness distribution is an ellipse with semimajor axis

p, semiminor axis m/2 and centered at the point (0, p) for x ∈ [0, p], and a parabola with directrix
parallel to the y-axis, vertex (p, m) and passing through (1, 0) for x ∈ [p, 1].

ϕ0t(x) =

{
m
2p

√
x(2p− x), x ≤ p.

− (x2−2px+2p−1)m
2(p−1)2 , x > p.

(8.36)

which certainly holds the conditions ϕ0t(0) = 0, ϕ′0t(0) = ∞, ϕ0t(p) = m, ϕ′0t(p) = 0, ϕ0t(1) = 0
and ϕ′0t(1) 6= ∞.

Figure 8.8 shows the upper and lower coordinates for the particular solution, which is considered
to be the baseline airfoil in the designing process.
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Figure 8.8: Baseline for the designing of an optimal airfoil.

On the other hand, it is easy to find an homogeneous solution for the camber as
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ϕ1c(x) = sin (πx), (8.37)

which satisfies ϕ1c(0) = 0 and ϕ1c(1) = 0, and varies between 0 and 1.
Similarly, an homogeneous solution for the thickness is chosen to be

ϕ1t(x) =

{
0.5− 0.5 sin

(
π
2 + 2π x

p

)
, x ≤ p.

− 27
4(p−1)3 (x− p)2(x− 1), x > p.

(8.38)

which holds ϕ1t(0) = 0, ϕ′1t(0) = 0, ϕ1t(p) = 0, ϕ′1t(p) = 0, ϕ1t(1) = 0 and ϕ′1t(1) 6= 0. This
function varies between −1 and 1.

The expressions for the camber and thickness distributions then become

yc(x;β) = ϕ0c(x) + ϕ1c(x)yc(x;β), (8.39)
yt(x;β) = ϕ0t(x) + ϕ1t(x)yt(x;β), (8.40)

respectively. In this way, the neural network itself will be able to perturb the baseline in Figure
8.8 so as to achieve almost any airfoil shape with the conditions in Section 8.3.2.

5. Apply lower and upper bounds

The camber distribution is constrained to lie in the interval yc ∈ [inf (yc), sup (yc)]. Similarly,
the thickness distribution must lie in yt ∈ [inf (yt), sup (yt)]. To deal with such constraints we
bound the network outputs in the form

yc(x;β) =


inf (yc), yc(x;β) < inf (yc).
yc(x;β), inf (yc) ≤ yc(x;β) ≤ sup (yc).
sup (yc), yc(x;β) > sup (yc).

(8.41)

yt(x;β) =


inf (yt), yt(x;β) < inf (yt).
yt(x;β), inf (yt) ≤ yt(x;β) ≤ sup (yt).
sup (yt), yt(x;β) > sup (yt).

(8.42)

Here we set the lower and upper bounds of the camber and thickness distributions to inf (yc) =
−0.05, sup (yc) = 0.05, inf (yt) = 0 and sup (yt) = m/2.

In summary, the extended class of multilayer perceptron constructed in this section spans a
family V of parameterized functions (yc, yt)(x;β) of dimension s = 14+2, where 14 is the number of
biases and synaptic weights in the neural network and 2 is the number of independent parameters.
The elements of this function space are thus of the form

(yc, yt) : R → R2

x 7→ (yc, yt)(x;β).

Formulation of variational problem

The objective functional, which is to be maximized, is the aerodynamic efficiency, which is defined
by the Cl/Cd ratio. Maximization of Cl/Cd is equivalent to minimization of −Cl/Cd.
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The statement of the optimal airfoil design problem formulated in this section is then to find a
function (yc, yt)∗(x;β∗) for which the functional

F [(yc, yt)(x;β)] =
Cl

Cd
, (8.43)

defined on V , takes on a minimum value.
In order to evaluate this objective functional is necessary to perform a computational fluid

dynamic analysis for each given design. This will provide us with both the lift and drag coefficients.
The fluid here is assumed to be Eulerian, and the numerical method used is the finite element
method. In order to integrate the Euler equations we use the computational fluid dynamics solver
PUMI [79]. Here the computational cost and the quality of the solution are very much dependent
on the quality of the mesh used. The software tool used for mesh generation is GiD [25].

Solution of reduced function optimization problem

The quasi-Newton was tested but did not always converge. This may have been due to some noise,
which creates many local minima that could ‘trap’ the quasi-Newton method.

The evolutionary algorithm is applied for training the neural network. Table 8.3.3 provides a
summary of the operators and parameters chosen for the evolutionary algorithm. Note that the
total number of evaluations here is the population size multiplied by the number of free parameters.

Training Operators
Fitness assignment method Linear ranking
Selection method Stochastic universal sampling
Recombination method Intermediate
Mutation method Normal
Training Parameters
Population size 100
Number of free parameters 16
Selective pressure 1.5
Recombination size 0.25
Mutation rate 0.1
Mutation range 0.1

Table 8.2: Training operators and parameters for the minimum Eulerian drag problem.

These training operators and parameters are chosen due to their statistically reliable perfor-
mance [81]. The number of free parameters determines the dimensions of the search space and
is determined by the multilayer perceptron network architecture. More neurons in the multilayer
perceptron will have more parameters, which will be able to represent a greater design complexity.
However, as previously discussed, this comes at the cost of computational time. The choice of the
population size is a similar compromise. Each individual describes one complete shape and must
be evaluated using the fluid solver. But if there are not enough individuals in a population, the
algorithm may not explore enough of the solution space to find the global optimum.

It is possible to use already well performing aerofoils to limit the search space, which would
reduce the computational time significantly. However, this tends to result in very small modifi-
cations to known standard designs. By searching a large function space there is more scope to
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discover completely novel designs which would otherwise not be considered. Here the individuals
in the population are initialized with random values chosen from a normal distribution with mean
0 and standard deviation 1.

The evaluation history by the evolutionary algorithm is depicted in Figure 8.9. From this
picture we can see that the aerodynamic efficiency increases from 4.5 to 4.9, but full convergence
is not still achieved, since the evaluation value does not reach a stationary state. This is due to
the small number of training generations applied, which is not set to a bigger value due to time
constraints. Indeed, training of this neural network lasted one week. Therefore, some form of
parallel computing is needed.
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Figure 8.9: Evaluation history in the optimal airfoil design problem.

Table 8.3 shows the training results for this problem. Here M the number of objective function
evaluations, CPU the CPU time for a laptop AMD 3000, ‖β∗‖ the final parameters norm, f∗(β∗)
the final value for the objective function, p∗ the optimal position of maximum thickness, α∗ the
optimal angle of attack, Cl the corresponding lift coefficient, Cd the corresponding drag coefficient,
ρ(f) the mean evaluation of the final population and σ(f) the standard deviation of the final
population.

The optimal camber and thickness functions represented by the neural network are plotted in
Figures 8.10 and 8.11, respectively.

The upper and lower coordinates of this airfoil are depicted in Figure 8.12. This is the shape
of a supercritical airfoil.

The pressure coefficient field distribution on the fluid domain is plotted in Figure 8.13.

8.3.4 Conclusions

A class of neural network extended with independent parameters, boundary conditions and lower
and upper bounds is able to represent a very complete family of airfoils. This neural network has
been used to find an optimal design and its associated angle of attack with given thickness and
under transonic flight conditions.
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M = 160000
CPU = 615276
‖β∗‖ = 1.04762
f(β∗) = −4.89434

p∗ = 0.337642
α∗ = 3.890

CL(f(β∗)) = 0.7613790
CD(f(β∗)) = 0.1556520

ρ(f) = −4.79198
σ(f) = 0.0366308

Table 8.3: Training results for the optimal airfoil design problem.
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Figure 8.10: Results for the camber in the optimal airfoil design problem.

Future work relies on distributing the computation over a cluster, in order to decrease compu-
tational time and to achieve better training results.
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Figure 8.11: Results for the thickness in the optimal airfoil design problem.
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Figure 8.12: Results for the upper and lower surface coordinates in the optimal airfoil design problem.
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Figure 8.13: Pressure coefficient distribution for the optimal airfoil design.



Chapter 9

Conclusions and future work

The learning problem in the multilayer perceptron has been stated from the point of view of
functional analysis and variational calculus. This provides a direct method for the solution of
variational problems. The solving approach here consists in three steps: The first step is to choose
a suitable parameterized function space in which the solution to the problem is to be approximated.
The elements of this family of functions are those spanned by a multilayer perceptron. In the
second step the variational problem is formulated by selecting an appropriate objective functional,
defined on the function space chosen before. The third step is to solve the reduced function
optimization problem. This is performed with a training algorithm capable of finding an optimal
set of parameters.

In some cases a standard multilayer perceptron will define a correct representation for the
solution. In some other occasions some extensions to this class of neural network shall be required.
Here a class of multilayer perceptron extended with independent parameters, boundary conditions
and lower and upper bounds has been developed. This extended class of multilayer perceptron
might be able to span a more suited function space for some variational problems, so as to deal
with a bigger amount of applications.

A variational formulation for the multilayer perceptron is general enough to include traditional
learning tasks such as function regression, pattern recognition or time series prediction. In this
work these problems have been explained from a variational point of view, and two function
regression applications in the naval and the aeronautical industries are solved. The former deals
with modeling the residuary resistance of sailing yachts from hull geometry coefficients and Froude
number data. In the later the self-noise generated by an airfoil is modeled from a data set of
different airfoil geometry coefficients and flight conditions.

The application of this numerical method for problems not involving an input-target data set has
been validated through several classical problems in the calculus of variations. In particular, two
unconstrained applications, the geodesic and the brachistochrone problems, and two constrained
ones, the catenary and the isoperimetric problems, have been solved. The results provided by
the neural network have been compared against the analytical ones, demonstrating very good
agreement between the approximate and the exact values. In these cases, integration of functions
is needed so as to evaluate the objective functional. This is performed with the Runge-Kutta-
Fehlberg method.

The optimal control problem has also been formally stated as a learning task for the multilayer
perceptron. The car problem, which has analytical solution, has been solved by means of an
extended class of multilayer perceptron for validation purposes. Two practical applications in the
chemical and the aeronautical industries have also been approached with this numerical method.

179
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In the first one, the feed rate history for a fed batch fermenter providing maximum yield has been
found. In the second one, the elevator deflection angle history for an aircraft which gives a safe and
comfortable landing has been determined. All these optimal control problems need the integration
of a system of ordinary differential equations to evaluate the objective functional, which is also
done with the Runge-Kutta-Fehlberg method.

Similarly, the inverse problem has been formulated within a variational theory for the multilayer
perceptron. An input estimation and a property estimation problems artificially generated have
been approached. The numerical solutions have been compared to the exact ones, with encouraging
results. Evaluation of the objective functional for these two problems demands the integration of a
partial differential equation. Here the finite element method has been applied for that purpose. On
the other hand, an engineering application in the metallurgical industry has also been solved. This
problem deals with finding the effective activation energy and the dissolution rate of hardening
precipitates for aluminium alloys in thermal treatments. The objective functional for this problem
is simply evaluated by solving a set of algebraic equations.

The optimal shape design problem has also been stated as a learning task for the multilayer
perceptron. A validation example with analytical solution has again been provided, and the results
here show a good suitability of this numerical method for this class of problems. In this case, the
integration of a function with the Runge-Kutta-Fehlberg method must be performed to evaluate
the objective functional. An engineering application in the aeronautical industry has also been
included. Here an airfoil with given thickness has been designed to provide maximum aerodynamic
efficiency for transonic flight conditions. The objective functional is evaluated here by integrating
a partial differential equation. This is done with the finite element method.

Finally, a software model for the multilayer perceptron is next constructed following a top-down
development. The whole process has been carried out in the Unified Modeling Language (UML)
and the final implementation has been written in the C++ Programming Language. The result
is a comprehensive C++ class library for the solution of function regression, pattern recognition,
time series prediction, optimal control, inverse and optimal shape design problems, called Flood
and released under an open source license.

In summary, all classes of problems considered in this PhD Thesis have been stated in the same
manner, which demonstrates the simplicity of problem formulation. Moreover, every application
has been solved up to a great degree of accuracy, showing the good approximation properties of
this numerical method. Finally, most of the problems have been successfully approached with
first-order training algorithms, which proves the very satisfactory convergence properties of the
presented technique.

Ongoing work focuses on the solution of more complex variational problems in engineering by
means of a variational formulation for an extended class of multilayer perceptron. Some examples
could include many input and output variables, independent parameters, boundary conditions,
lower and upper bounds, constraints, partial differential equations and convergence to local optima.

As many of these applications are very expensive in terms of computational demand, it is
planned to distribute the different objective functional evaluations over a cluster. This kind of
parallelization will drastically reduce the calculation time. Even more, it will make it possible to
approach some problems which would be untractable otherwise.



Appendix A

The software model of Flood

Neural networks have been described as a practical tool for the solution of variational problems.
This includes data modeling, optimal control, inverse analysis and optimal shape design.

In this Appendix we model a software implementation for the multilayer perceptron. The
whole process is carried out in the Unified Modeling Language (UML), which provides a formal
framework for the modeling of software systems. The final implementation is to be written in the
C++ Programming Language.

A small part of this work has been published in [67].

A.1 The Unified Modeling Language (UML)

The Unified Modeling Language (UML) is a general purpose visual modeling language that is used
to specify, visualize, construct, and document the artifacts of a software system [88].

UML class diagrams are the mainstay of object-oriented analysis and design. They show the
classes of the system, their interrelationships and the attributes and operations of the classes.

In order to construct a model for the multilayer perceptron, we follow a top-down development.
This approach to the problem begins at the highest conceptual level and works down to the
details. In this way, to create and evolve a conceptual class diagram for the multilayer perceptron,
we iteratively model:

1. Classes.

2. Associations.

3. Derived classes.

4. Attributes and operations.

A.2 Classes

In colloquial terms a concept is an idea or a thing. In object-oriented modeling concepts are
represented by means of classes [94]. Therefore, a prime task is to identify the main concepts (or
classes) of the problem domain. In UML class diagrams, classes are depicted as boxes [88].

Through all this work, we have seen that neural networks are characterized by a neuron model,
a network architecture, an objective functional and a training algorithm. The characterization in
classes of these four concepts for the multilayer perceptron is as follows:
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Neuron model The class which represents the concept of perceptron neuron model is called
Perceptron.

Network architecture The class representing the concept of network architecture in the multi-
layer perceptron is called MultilayerPerceptron.

Objective functional The class which represents the concept of objective functional in a multi-
layer perceptron is called ObjectiveFunctional.

Training algorithm The class representing the concept of training algorithm in a multilayer
perceptron is called TrainingAlgorithm.

Figure A.1 depicts a starting UML class diagram for the conceptual model of the multilayer
perceptron.

Perceptron MultilayerPerceptron ObjectiveFunctional TrainingAlgorithm

Figure A.1: A conceptual diagram for the multilayer perceptron.

A.3 Associations

Once identified the main concepts in the model it is necessary to aggregate the associations among
them. An association is a relationship between two concepts which points some significative or
interesting information [94]. In UML class diagrams, an association is shown as a line connecting
two classes. It is also possible to assign a label to an association. The label is typically one or two
words describing the association [88].

The appropriate associations in the system are next identified to be included to the UML class
diagram of the system:

Neuron model - Multilayer perceptron A multilayer perceptron is built by perceptrons.

Network architecture - Objective functional A multilayer perceptron has assigned an ob-
jective functional.

Objective functional - Training algorithm An objective functional is improved by a training
algorithm.

Figure A.2 shows the above UML class diagram with these associations aggregated.

A.4 Derived classes

In object-oriented programming, some classes are designed only as a parent from which sub-classes
may be derived, but which is not itself suitable for instantiation. This is said to be an abstract class,
as opposed to a concrete class, which is suitable to be instantiated. The derived class contains all
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Perceptron

MultilayerPerceptron ObjectiveFunctional TrainingAlgorithm

is built by

has assigned is improved by

Figure A.2: Aggregation of associations to the conceptual diagram.

the features of the base class, but may have new features added or redefine existing features [94].
Associations between a base class an a derived class are of the kind is a [88].

The next task is then to establish which classes are abstract and to derive the necessary concrete
classes to be added to the system. Let us then examine the classes we have so far:

Neuron model The class Perceptron is abstract, because it does not represent any concrete
neuron model, since it must be assigned a specific activation function.

On the other hand, a multilayer perceptron with a sigmoid hidden layer and a linear output
layer meets the universal approximation theorem. Therefore, concrete classes for the sigmoid
perceptron and the linear perceptron must be derived. They are called SigmoidPerceptron
and LinearPerceptron, respectively.

Network architecture The class MultilayerPerceptron is a concrete class and is itself suitable
for instantiation.

Objective functional The class ObjectiveFunctional is abstract, because it does not represent
a concrete objective functional for the multilayer perceptron.

For function regression problems, the sum of squares error can approximate the conditional
distribution of the output variables, conditioned on the input variables. For pattern recog-
nition problems, the sum of squares error can also approximate the posterior probabilities of
class membership, again conditioned on the input variables. Therefore we derive a class for
the sum of squares error, which is called SumOfSquaresError. There might arise some occa-
sions when we want to regularize the neural network’s output. For that reason we add the
class SumOfSquaresErrorWithFreeParameterDecay to the model. Both the sum of squares
error and the sum of squares error with free parameter decay objective functionals are mea-
sured on a training data set, so we add to the model a class which represents that concept.
This is called TrainingDataSet, and it is a concrete class.

In order to solve the brachistochrone and the isoperimetric problems the classes BrachistochroneProblem
and IsoperimetricProblem are derived, respectively. To evaluate the performance of the
neural network in that two problems we make use of numerical integration. In this way, we
add to the model an utility class called IntegrationOfFunctions.

It is always possible to derive new objective functionals for the multilayer perceptron at any
time and include them in the system.
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Training algorithm The class TrainingAlgorithm is abstract, because it does not represent a
training algorithm for an objective function of a multilayer perceptron.

Several training algoritm classes have been implemented. These include GradientDescent,
QuasiNewtonMethod or EvolutionaryAlgorithm, for instance.

Figure A.3 shows the UML class diagram for the multilayer perceptron with some of the derived
classes included.

Perceptron

MultilayerPerceptron ObjectiveFunctional TrainingAlgorithm

is built by

has assigned is improved by

LinearPerceptron

SigmoidPerceptron

BrachistochroneProblem

CarProblem

GradientDescent

QuasiNewtonMethod

SumSquaredError

EvolutionaryAlgorithm

is a

is a

is a

is a

is a

is a

is a

is a

MinimumDragProblem

ThermalConductivityEstimationProblem

is a

is a

Figure A.3: Aggregation of derived classes to the association diagram.
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A.5 Attributes and operations

An attribute is a named value or relationship that exists for all or some instances of a class. An
operation is a procedure associated with a class [94]. In UML class diagrams, classes are depicted
as boxes with three sections: the top one indicates the name of the class, the one in the middle
lists the attributes of the class, and the bottom one lists the operations [88].

A.5.1 Perceptron

A perceptron neuron model has the following attributes:

1. A number of neuron inputs.
2. A set of synaptic weights.
3. A bias.

and performs the following operations:

1. Get the output value for a given set of input signals.
2. Get the output derivative value for a given set of input signals.

Figure A.4 shows the class Perceptron together with its derived classes, SigmoidPerceptron
and LinearPerceptron. It includes the attributes and the operations of the base class and the
derived classes.

+getNetInputSignal()

-numberOfInputs
-bias
-synapticWeights

Perceptron

+getOutputSignal()

LinearPerceptron

+getOutputSignal()

SigmoidPerceptron

is a

is a

Figure A.4: Attributes and operations of the Perceptron classes.

A.5.2 Multilayer perceptron

A multilayer perceptron has the following attributes:
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1. A number of network inputs.
2. A hidden layer of a given number of sigmoid neurons.
3. An output layer of a given number of linear neurons.

and performs the following operations:

1. Get the set of output signals for a given set of input signals.
1. Get the Jacobian matrix for a given set of input signals.

Figure A.5 shows the attributes and operations of the class MultilayerPerceptron.

+getOutput()
+getJacobian()

-numberOfInputs
-numberOfHiddenNeurons
-numberOfOutputs
-hiddenLayer
-outputLayer

MultilayerPerceptron

Figure A.5: Attributes and operations of the class MultilayerPerceptron.

A.5.3 Objective functional

An objective functional for a multilayer perceptron has the following attributes:

1. A relationship to a multilayer perceptron. In C++ this is implemented as a pointer to a multi-
layer perceptron object.

and performs the following operations:

1. Get the evaluation of a multilayer perceptron.
2. Get the objective function gradient vector of a multilayer perceptron.

On the other hand, a training data set has the following attributes:

1. A number of samples.
2. A number of input variables.
3. A number of target variables.
4. A set of input data.
5. A set of target data.

and performs the following operations:

1. Load the training data set from a data file.

Last, the utility class for numerical integration has no attributes, and performs a unique oper-
ation:
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1. Get the definite integral of a function.

Figure A.6 shows the class ObjectiveFunctional together with some of its derived classes. It
includes the attributes and the operations of the base class and the derived classes.

-multilayerPerceptron

ObjectiveFunctional

+getEvaluation()
+getGradient()
+getHessian()

SumSquaredError

+train()

-xa, ya, xb, yb

BrachistochroneProblem

+getEvaluation()
+getGradient()
+getHessian()

-xi, vi, xf, vf

CarProblem

is a

is a

is a

+getEvaluation()
+getGradient()
+getHessian()

-xi, vi, xf, vf

ThermalConductivityEstimationProblem

+getEvaluation()
+getGradient()
+getHessian()

-xi, vi, xf, vf

MinimumDragProblem

Figure A.6: Attributes and operations of some ObjectiveFunctional classes.

A.5.4 Training algorithm

A training algorithm for a multilayer perceptron has the following attributes:

1. A relationship to an objective functional for a multilayer perceptron. In C++ this is imple-
mented as a pointer to an objective functional object.
2. A set of training parameters.

and performs the following operations:
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1. Train a multilayer perceptron.

Figure A.7 shows the class TrainingAlgorithm together with its derived classes. It includes
the attributes and the operations of the base class and the derived classes.

-objectiveFunctional

TrainingAlgorithm

+train()

-trainingOperators
-trainingParameters

ConjugateGradient

+train()

-trainingOperators
-trainingParameters

QuasiNewtonMethod

+train()

-trainingOperators
-trainingParameters

EvolutionaryAlgorithm

is a

is a

is a

Figure A.7: Attributes and operations of the TrainingAlgorithm classes.



Appendix B

Numerical integration

Evaluation of the objective functional of a neural network often requires to integrate functions, or-
dinary differential equations and partial differential equations. In general, approximate approaches
need to be applied here.

Some standard methods for numerical integration are described in this Appendix. They are
meant to be utilities which can be embedded into a specific problem when necessary.

B.1 Integration of functions

B.1.1 Introduction

Numerical integration is the approximate computation of an integral using numerical techniques.
More specifically, the problem is to compute the definite integral of a given real function f(x) over
a closed interval [a, b],

I[y(x)] =
∫ b

a

f(x)dx. (B.1)

There are a wide range of methods available for numerical integration [83]. The numerical
computation of an integral is sometimes called quadrature.

B.1.2 Closed Newton-Cotes formulas

The Newton-Cotes formulas are an extremely useful and straightforward family of numerical in-
tegration techniques. The integration formulas of Newton and Cotes are obtained dividing the
interval [a, b] into n equal parts such that fn = f(xn) and h = (b− a)/n. Then the integrand f(x)
is replaced by a suitable interpolating polynomial P (x), so that

∫ b

a

f(x) ∼
∫ b

a

P (x). (B.2)

To find the fitting polynomials, the Newton-Cotes formulas use Lagrange interpolating polyno-
mials [93]. Next we examine some rules of this kind.
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The trapezoidal rule

The 2-point closed Newton-Cotes formula is called the trapezoidal rule, because it approximates the
area under a curve by a trapezoid with horizontal base and sloped top (connecting the endpoints
a and b). In particular, let call the lower and upper integration limits x0 and x1 respectively, the
integration interval h, and denote fn = f(xn). Then the trapezoidal rule states that [99]

∫ x2

x1

f(x)dx = h

[
1
2
f1 +

1
2
f2

]
+ O(h3f ′′), (B.3)

were the error term O(·) means that the true answer differs from the estimate by an amount
that is the product of some numerical coefficient times h3 times the value of the functions second
derivative somewhere in the interval of integration.

Simpson’s rule

The 3-point closed Newton-Cotes formula is called Simpson’s rule. It approximates the integral of
a function using a quadratic polynomial. In particular, let the function f be tabulated at points
x0, x1, and x2, equally spaced by distance h, and denote fn = f(xn). Then Simpson’s rule states
that [99]

∫ x3

x1

f(x)dx = h

[
1
3
f1 +

4
3
f2 +

1
3
f3

]
+ O(h5f (4)). (B.4)

Here f (4) means the fourth derivative of the function f evaluated at an unknown place in the
interval. Note also that the formula gives the integral over an interval of size 2h, so the coefficients
add up to 2.

B.1.3 Extended Newton-Cotes formulas

The Newton-Cotes formulas are usually not applied to the entire interval of integration [a, b], but
are instead used in each one of a collection of subintervals into which the interval [a, b] has been
divided. The full integral is the approximated by the sum of the approximations to the subintegrals.
The locally used integration rule is said to have been extended, giving rise to a composite rule [93].
We proceed to examine some composite rules of this kind.

Extended trapezoidal rule

For n tabulated points, using the trapezoidal rule n− 1 times and adding the results gives [99]

∫ xn

x1

f(x)dx = h

[
1
2
f1 + f2 + fn−1 +

1
2
fn

]
+ O

(
(b− a)3f ′′

N2

)
. (B.5)

Note that the error estimate is here written in terms of the interval b − a and the number of
points N instead of in terms of h.



B.2. ORDINARY DIFFERENTIAL EQUATIONS 191

Extended Simpson’s rule

For and odd number n of tabulated points, the extended Simpson’s rule is [99]

∫ xn

x1

f(x)dx = h

[
1
3
f1 +

4
3
f2 +

2
3
f3 +

4
3
f4 + . . . +

2
3
fn−2 +

4
3
fn−1 +

1
3
fn

]
+ O

(
1

N4

)
. (B.6)

B.1.4 Ordinary differential equation approach

The evaluation of the integral (B.1) is equivalent to solving for the value I ≡ y(b) the ordinary
differential equation

dy

dx
= f(x), (B.7)

y(a) = 0. (B.8)

Section B.2 of this PhD Thesis deals with the numerical integration of differential equations. In
that section, much emphasis is given to the concept of ‘variable’ or ‘adaptive’ choices of stepsize.

B.2 Ordinary differential equations

B.2.1 Introduction

An ordinary differential equation (ODE) is an equality involving a function and its derivatives. An
ODE of order n is an equation of the form

F (x, y(x), y′(x), . . . , y(n)(x)) = 0, (B.9)

where y is a function of x, y′ = dy/dx is the first derivative of y with respect to x, and y(n) =
dyn/dxn is the n-th derivative of y with respect to x.

The generic problem of a n-th order ODE can be reduced to the study of a set of n coupled
first-order differential equations for the functions yi, i = 1, . . . , n, having the general form

dyi(x)
dx

= fi(x, y1, . . . , yN ), (B.10)

for i = 1, . . . , n and where the functions fi on the right-hand side are known.
While there are many general techniques for analytically solving different classes of ODEs, the

only practical solution technique for complicated equations is to use numerical methods. The most
popular of these are the Runge-Kutta and the Runge-Kutta-Fehlberg methods.

A problem involving ODEs is not completely specified by its equations. In initial value problems
all the yi are given at some starting value x’s, and it is desired to find the yi’s at some final point
xf , or at some discrete list of points (for example, at tabulated intervals).
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B.2.2 The Euler method

The formula for the Euler method is

yn+1 = yn + hf(xn, yn) +O(h2), (B.11)

which advances a solution from xn to xn+1 = xn + h. The formula is unsymmetrical: It advances
the solution through an interval h, but uses derivative information only at the beginning of that
interval.

There are several reasons that Eulers method is not recommended for practical use, among
them, (i) the method is not very accurate when compared to other methods run at the equivalent
stepsize, and (ii) neither is it very stable [83].

B.2.3 The Runge-Kutta method

Consider the use of a step like (B.11) to take a ‘trial’ step to the midpoint of the interval. The use
the value of both x and y at that midpoint to compute the ‘real’ step across the whole interval.
This can be written

k1 = hf(xn, yn)

k2 = hf(xn +
1
2
h, yn +

1
2
k1)

yn+1 = yn + k2 +O(h3) (B.12)

As indicated in the error term, this symmetrization cancels out the first-order error term,
making the method second order. A method is conventionally called nth order if its error term is
O(hn+1)- In fact Equation (B.12) is called the second-order Runge-Kutta or midpoint method.

There are various specific formulas that derive from this basic idea. The most often used is the
classical fourth-order Runge-Kutta formula,

k1 = hf(xn, yn)

k2 = hf(xn +
h

2
, yn +

k1

2
)

k3 = hf(xn +
h

2
, yn +

k2

2
)

k4 = hf(xn + h, yn + k3)

yn+1 = yn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+O(h5) (B.13)

The fourth order Runge-Kutta method requires four evaluations of the right-hand side per step
h.

B.2.4 The Runge-Kutta-Fehlberg method

Implementation of adaptive stepsize control requires that the stepping algorithm signal information
about its performance, most important, an estimate of its truncation error.
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It is this difference that we shall endeavor to keep to a desired degree of accuracy, neither too
large nor too small. We do this by adjusting h.

An step size adjustment algorithm is based on the embedded Runge-Kuta formulas, originally
invented by Fehlberg. The general form of a fifth-order Runge-Kutta formula is

k1 = hf(xn, yn)
k2 = hf(xn + a2h, yn + b21k1)

. . .

k6 = hf(xn + a6h, yn + b61k1 + . . . + b65k5)
yn+1 = yn + c1k1 + c2k2 + c3k3 + c4k4 + c5k5 + c6k6 +O(h6) (B.14)

The embedded fourth order formula is

y∗n+1 = yn + c∗1k1 + c∗2k2 + c∗3k3 + c∗4k4 + c∗5k5 + c∗6k6 +O(h5) (B.15)

And so the error estimate is

∆ ≡ yn+1 − y∗n+1

=
6∑

i=1

(ci − c∗i )ki. (B.16)

The particular values of the various constants that we favor are those found by Cash and Karp
[21], and given in Table B.1. These give a more efficient method than Fehlberg’s original values
[83].

i ai bi1 bi2 bi3 bi4 bi5 ci c∗i
1 37

378
2825
27648

2 1
5

1
5 0 0

3 3
10

3
40

9
40

250
621

18575
48384

4 3
5

3
10 − 9

10
6
5

125
594

13525
55296

5 1 − 11
54

5
2 − 70

27
35
27 0 277

14336
6 7

8
1631
55296

175
512

575
13824

44275
110592

253
4096

512
1771

1
4

Table B.1: Cash and Karp parameters for the Runge-Kutta-Fehlberg method.

Now that we know, approximately, what the error is, we need to consider how to keep it within
desired bounds. What is the relation between ∆ and h? According to Equations (B.14) and (B.15),
∆ scales as h5. If we take a step h1 and produce an error ∆1, therefore, the step h0 that would
have given some other value ∆0 is readily estimated as

h0 = h1

∣∣∣∣∆0

∆1

∣∣∣∣0.2

(B.17)

Henceforth we will let ∆0 denote the desired accuracy. Then, Equation (B.17) is used in two
ways: If ∆1 is larger than ∆0 in magnitude, the equation tells how much to decrease the step when
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we retry the present (failed) step. If ∆1 is smaller than ∆0, on the other hand, then the equation
tells how much we can safely increase the stepsize for the next step.

This notation hides the fact that ∆0 is actually a vector of desired accuracies, one for each
equation in the set of ODEs. In general, the accuracy requirement will be that all equations are
within their respective allowed errors.

h0 =

 Sh1

∣∣∣∆0
∆1

∣∣∣0.20

∆0 ≥ ∆1

Sh1

∣∣∣∆0
∆1

∣∣∣0.25

∆0 < ∆1

(B.18)

B.3 Partial differential equations

B.3.1 Introduction

Partial differential equations arise in all fields of science and engineering, since most real physical
processes are governed by them. A partial differential equation is an equation stating a relationship
between a function of two or more independent variables and the partial derivatives of this function
with respect to the independent variables. In most problems, the independent variables are either
space (x, y, z) or space and time (x, y, z, t). The dependent variable depends on the physical
problem being modeled.

Partial differential equations are usually classified into the three categories, hyperbolic, parabolic,
and elliptic, on the basis of their characteristics [83].

The prototypical example of a hyperbolic equation is the wave equation

∂2u(x, t)
∂t2

= v2∇2u(x, t), (B.19)

where v is the velocity of wave propagation.
The prototypical parabolic equation is the diffusion equation

∂u(x, t)
∂t

= ∇(D∇u(x, t)), (B.20)

where D is the diffusion coefficient.
The prototypical elliptic equation is the Poisson equation

∇2u(x) = ρ(x), (B.21)

where the source term ρ is given. If the source term is equal to zero, the equation is Laplace’s
equation.

From a computational point of view, the classification into these three canonical types is not as
important as some other essential distinctions [83]. Equations (B.19) and (B.20) both define initial
value (or Cauchy) problems. By contrast, Equation (B.21) defines a boundary value problem.

In an initial value problem information of u is given at some initial time t0 for all x. The PDE
then describes how u(x, t) propagates itself forward in time [83].

On the other hand, boundary value problems direct to find a single static function u which
satisfies the equation within some region of interest x, and which has some desired behavior on
the boundary of that region [83].
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In a very few special cases, the solution of a PDE can be expressed in closed form. In the
majority of problems in engineering and science, the solution must be obtained by numerical
methods.

B.3.2 The finite differences method

In the finite differences approach, all the derivatives in a differential equation are replaced by
algebraic finite difference approximations, which changes the differential equation into an algebraic
equation that can be solved by simple arithmetic [45].

The error between the approximate solution and the true solution here is determined by the
error that is made by going from a differential operator to a difference operator. This error is called
the discretization error or truncation error [76]. The term truncation error reflects the fact that
a difference operator can be viewed as a finite part of the infinite Taylor series of the differential
operator.

B.3.3 The finite element method

Another approach for solving differential equations is based on approximating the exact solution
by an approximate solution, which is a linear combination of specific trial functions, which are
typically polynomials. These trial functions are linearly independent functions that satisfy the
boundary conditions. The unknown coefficients in the trial functions are then determined by
solving a system of linear algebraic equations [45].

Because finite element methods can be adapted to problems of great complexity and unusual
geometries, they are an extremely powerful tool in the solution of important problems in science
and engineering. It is out of the scope of this work to provide a detailed explanation of the finite
element method. The interested reader is referred to [102].
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K. Lau, R. Lopez and E. Oñate. Neural networks for optimal control of aircraft landing systems,
in Proceedings of the World Congress on Engineering WORLDENG-ICAEM 2007, 2007.

I. Ortigosa, R. Lopez and J. Garcia. A neural networks approach to residuary resistance of sailing
yachts prediction, in Proceedings of the International Conference on Marine Engineering MARINE
2007, 2007.
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AIRBUS Contract.

01/09/2006 - 29/02/2009:
Risk Assessment Model of the Water-Sediment-Soil (RAMWASS)
European Commission, Ref. GOCE-CT-2006-037081.

01/04/2005 - 31/03/2008:
Detailed Multi-Physics Modelling of Friction Stir Welding (DEEPWELD)
European Commission, Ref. AST4-CT-2005-516134.

01/11/2004 - 31/10/2006:
Grid Based Decision Support System for Clinical Diagnosis and Interventions in Cardiovascular

Problems (DISHEART)
European Commission, Ref. COOP-CT-2004-513226.

01/10/2002 - 30/09/2003:
Decision Support System for Risk Assessment and Management of Floods (RAMFLOOD)
European Commission, Ref. IST-2001-37581.
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Appendix E

Related software

Here a software package which is a result of this PhD Thesis is cited.

Flood: An Open Source Neural Networks C++ Library (www.cimne.com/flood).
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